Oversikt, regneark

Tabellen under gir en oversikt over alle Excel-regneark det refereres til på nettstedet.

Artikkel Beskrivelse og regneark
Pytagoreiske tripler Genererer pytagoreiske tripler basert på formlene x = 2st, y = s2t2 og z = s2 + t2.
pytagoreiske_tripler
RSA-systemet Viser utregning i forbindelse med Eulers totient-teorem.
euler_15
Løsningsforslag, mer om tallteori Viser utregning i forbindelse med Eulers totient-teorem.
euler_14
Begreper i sannsynlighet Simulerer 1000 kast med to terninger og teller opp hvor mange ganger de forskjellige summene forekommer.
sum_to_terninger
Misforståelser i sannsynlighet

Simulerer 20 bilsifre og 30 fødselsdager, og markerer like verdier med en X.
flere_like

Gir brukeren mulighet til å eksperimentere med parametere i paradokset med de falske positive.
falske_positive

Introduksjon til kombinatorikk

Eksempler på bruk av kombinatorikk-funksjonene fakultet, permuter og kombinasjon.
kombinatorikk

Utvalg fra blandede mengder

Lar brukeren oppgi antall gutter og jenter i en klasse og i et utvalg, og beregner hvor mange kombinasjoner det finnes.
utvalg_av_elever

Introduksjon til statistikk

Viser hvordan vi kan bruke diagrammer til å gi galt inntrykk ved å «jukse» med aksene.
aksejuks

Grafiske presentasjoner

Viser et par stolpediagrammer.
stolpediagrammer

Måltall i statistikk

Demonstrerer bruk av funksjoner for å beregne gjennomsnitt, median, typetall, standardavvik, variasjonsbredde, persentiler, kvartiler og kvartilbredde.
maaltall

Binomisk fordeling

Viser bruk av funksjonen for å beregne binomiske sannsynligheter.
binom_fordeling

Løsningsforslag sannsynlighetsfordelinger

Viser bruk av funksjonen for å beregne hypergeometriske sannsynligheter.
hypergeom_fordeling

Viser bruk av funksjonen for å beregne poissonsannsynligheter.
poissonfordeling

Normalfordelingen

Beregner sannsynligheter i en normalfordeling med en gitt forventning og et gitt standardavvik.
normalfordeling

Estimering

Beregner konfidensintervaller for et gitt gjennomsnitt, et gitt standardavvik og en gitt populasjonsstørrelse basert på en normalfordeling.
konfidens_normal

Beregner konfidensintervaller for et gitt gjennomsnitt, et gitt standardavvik og en gitt populasjonsstørrelse basert på en t-fordeling.
konfidens_t

Samvariasjon

Beregner kovarians og korrelasjonskoeffisient.
samvariasjon

Sammenlikne datasett

Viser eksempler på bruk av funksjonen t.test.
t_test

 

Skjermfilmer, statistikk

Tabellen under gir en oversikt over alle skjermfilmer det refereres til på nettstedet under menyvalget Statistikk.

Artikkel Beskrivelse og film
Introduksjon til statistikk En introduksjon til statistikk med noen klassiske eksempler på misbruk av statistikk.
Introduksjon til statistikk
Grafiske presentasjoner Om hvordan data kan presenteres grafisk ved hjelp av linje-, stolpe- og sektordiagram.
Grafisk presentasjon
Måltall i statistikk

Vi lærer om sentralmålene gjennomsnitt, median, kvartil, prosentil og typetall.
Sentralmål i statistikk

Vi lærer om spredningsmålene standardavvik og utvalgsstandardavvik.
Spredningsmål i statistikk

Datainnsamling

Metodikk i datainnsamling og regler for å lage spørreundersøkelser.
Datainnsamling

Binomisk fordeling

En presentasjon av binomisk sannsynlighetsfordeling.
Binomisk fordeling

Normalfordelingen

Vi studerer normalfordelingen og sentralgrenseteoremet.
Normalfordelingen

Samvariasjon

En presentasjon av begrepene kovarians og korrelasjon.
Samvariasjon

Løsningsforslag, mer om statistikk

Sentralgrenseteoremet

Oppgave 1:

Vi skal finne sannsynligheten for at en orkidedyrker klarer å produsere minst 3200 blomsterstengler når han har 2500 planter, og i gjennomsnitt 20 % av plantene ikke får blomsterstengler, 40 % får én stengel, 30 % to stengler, og 10 % tre stengler.

Dersom X er antall stengler per plante, har vi altså at P(X = 0) = 0,2, P(X = 1) = 0,4, P(X = 2) = 0,3 og P(X = 3) = 0,1. Dersom Y er antall stengler totalt, skal vi finne P(Y ≥ 3200).

Vi beregner forventning og varians for X:

E(X) = 0 · 0,2 + 1 · 0,4 + 2 · 0,3 + 3 · 0,1 = 1,3.

E(X2) = 02 · 0,2 + 12 · 0,4 + 22 · 0,3 + 32 · 0,1 = 2,5.

Var(X) = E(X2) − [E(X)]2 = 2,5 − (1,3)2 = 0,81.

Altså μ = E(X) = 1,3, og σ2 = Var(X) = 0,81.

n = 2500, langt over tommelfingerregelen på «> 30». Så dersom antall stengler på en plante er uavhengig av de andre, har vi ifølge sentralgrenseteoremet at summen er tilnærmet normalfordelt. Standardavviket og variansen til Y blir 2500 ganger standardavviket og variansen til X, siden vi har 2500 planter.

Y ~ N(2500 · 1,3, 2500 · 0,81) = N(3250, 2025) = N(3250, 452).

Så skal vi finne P(Y ≥ 3200). Vi skriver =1-norm.fordeling(3200; 3250; 45; sann) i Excel eller 1- fordelingnormal(3250, 45, 3200) i GeoGebra og får 0,8667.

Det er altså om lag 86,67 % sannsynlighet for at han klarer å produsere nok stengler.

Vi kan også finne normaltilnærmngen ved å bruke normalfordelingstabellen. Vi gjør da først en standardisering, og finner at P(Y ≥ 3200) = 1 − P(Y < 3200) tilsvarer $1 – G({\large \frac{3200 – 3250}{45}}) \approx 1 – G(-1{,}11) = G(1{,}11)$. Så går vi inn i tabellen, rad 1,1, kolonne 0,01, der det står 0,8665.

Tilbake til oppgaven

Oppgave 2:

Vi har en juksemynt med sannsynlighet p = 0,6 for kron, og vil finne sannsynligheten for å få 125 eller færre kron i 200 kast. Det er oppgitt at sannsynligheten for dette er ca. 0,7858.

Vi skal avgjøre om en normaltilnærming kan forventes å være god i dette tilfellet. En normaltilnærming anses å være god hvis np(1 − p) ≥ 10. Vi har n = 200, p = 0,6, så vi får np(1 − p) = 200 · 0,6(1 − 0,6) = 48, så vi forventer at normaltilnærmingen er god.

Vi har at når X ~ bin(np), er normaltilnærmingen N(np, np(1 − p)), det vil si N(200 · 0,6, 200 · 0,6(1 − 0,6) = N(120, 48).

Hvis vi så skriver =norm.fordeling(125; 120; rot(48); sann) i Excel eller fordelingnormal(120, sqrt(48), 125) GeoGebra, får vi 0,7648.

Dette er en feil på ${\large \frac{0{,}7858 – 0{,}7648}{0{,}7858}} \approx 0{,}0268$, ca. 2,6 % for lavt.

Tilbake til oppgaven

Oppgave 3:

I oppgave 2 brukte vi normaltilnærming for å finne sannsynligheten for å få 125 eller færre kron i 200 kast med en mynt med sannsynlighet p = 0,6 for kron. Nå skal vi gjøre tilnærmingen om igjen med heltallskorreksjon.

Normalfordelingen er den samme som i oppgave 2, N(120, 48), men vi skal erstatte 125 med 125 + 0,5 = 125,5.

Hvis vi skriver =norm.fordeling(125,5; 120; rot(48); sann) i Excel eller fordelingnormal(120, sqrt(48), 125.5) i GeoGebra, får vi 0,7864.

I forhold til den riktige verdien på 0,7858, er feilen ${\large \frac{0{,}7858 – 0{,}7864}{0{,}7858}} \approx -0{,}0007$, ca. 0,1 % for høyt.

Tilnærmingen er altså blitt bedre, med bare 0,1 % feil i forhold til 2,6 % feil uten heltallskorreksjon.

Tilbake til oppgaven

Estimering

Oppgave 1:

Basert på at en bedrift på 6 tilfeldige dager produserer 210, 220, 210, 225, 220 og 217 støtfangere, skal vi gi et forventningsrett estimat for dagsproduksjonen av støtfangere.

Som estimat bruker vi gjennomsnittet: $\mu = \overline X = {\large \frac{210 + 220 + 210 + 225 + 220 + 217}{6}} = 217$.

Tilbake til oppgaven

Oppgave 2:

Basert på at en bedrift på 6 tilfeldige dager produserer 210, 220, 210, 225, 220 og 217 støtfangere, som i oppgave 1, og at standardavviket til produksjonen er σ = 5,8, skal vi angi estimert gjennomsnitt i form av en rapportering.

I oppgave 1 fant vi at gjennomsnittlig dagsproduksjon var 217 støtfangere.

I en rapportering angir vi estimert verdi pluss/minus standardavviket til estimatoren.

Standardavviket til estimatoren er $\frac{\displaystyle \sigma}{\displaystyle \sqrt n} = \frac{\displaystyle 5{,}8}{\displaystyle \sqrt 6} \approx 2{,}37$.

Så en rapportering av estimatet til gjennomsnittlig produksjon blir

$217 \pm \frac{\displaystyle 5{,}8}{\displaystyle \sqrt{6}} \approx 217 \pm 2{,}37$

Tilbake til oppgaven

Oppgave 3:

Basert på at en bedrift på 6 tilfeldige dager produserer 210, 220, 210, 225, 220 og 217 støtfangere, som i oppgave 1, skal vi estimere standardavviket til produksjonen og presentere estimert gjennomsnitt i form av en rapportering.

Vi fant i oppgave 1 at gjennomsnittsproduksjonen var 217 enheter

Vi estimerer standardavviket med utvalgsstandardavviket, som blir

 $\hat \sigma = S = \sqrt{\large \frac{(210 −217)^2 + (220 − 217)^2 + (210 −217)^2 + (225 − 217)^2 + (220 − 217)^2 + (217 − 217)^2}{5}} = 6$.

Og en rapportering blir

$217 \pm \frac{\displaystyle 6}{\displaystyle \sqrt{6}} \approx 217 \pm 2{,}45$

Tilbake til oppgaven

Oppgave 4:

Basert på at dagsproduksjonen av støtfangere i seks forskjellige dager er henholdsvis 210, 220, 210, 225, 220 og 217 enheter, som i oppgave 1, og at standardavviket til produksjonen er er σ = 5,8, skal vi angi et 95 % og 99 % konfidensintervall for gjennomsnittet til produksjonen.

Et 95 % konfidensintervall er gitt ved

$\overline X \pm 1{,}96 \cdot \frac{\displaystyle \sigma}{\displaystyle \sqrt n} = 217 \pm 1{,}96 \cdot {\large \frac{5{,}8}{\sqrt{6}}} \approx [212{,}36, \: 221{,}64]$

Et 99 % konfidensintervall er gitt ved

$\overline X \pm 2{,}58 \cdot \frac{\displaystyle \sigma}{\displaystyle \sqrt n} = 217 \pm 2{,}58 \cdot {\large \frac{5{,}8}{\sqrt{6}}} \approx [210{,}89, \: 223{,}11]$

Tilbake til oppgaven

Oppgave 5:

Vi skal bruke (normal) kvantiltabellen til å finne et 97 % konfidensintervall for gjennomsnittsvekta av laks når 13 laks er veid med et gjennomsnitt på 4,14 kg, og standardavviket til vekta i populasjonen er er σ = 0,7.

I et 97 % konfidensintervall er ${\large \frac{\alpha}{2}} = {\large \frac{1 − 0{,}97}{2}} = 0{,}015$. Vi slår opp ${\large \frac{\alpha}{2}} = 0{,}015$ i kvantiltabellen, der det står 2,1701.

Et 97 % konfidensintervall er da gitt ved

$\overline X \pm 2{,}17 \cdot \frac{\displaystyle \sigma}{\displaystyle \sqrt n} = 4,14 \pm 2{,}17 \cdot {\large \frac{0{,}7}{\sqrt{13}}} \approx [3{,}72, \: 4{,}56]$

Tilbake til oppgaven

Oppgave 6:

Vi skal bruke Excel til å beregne et 98 % konfidensintervall for gjennomsnittsproduksjonen av støtfangere, som på seks tilfeldige dager er 210, 220, 210, 225, 220 og 217 enheter, når vi vet at standardavviket til produksjonen er σ = 5,8.

Vi skriver =konfidens.norm(1-0,98; 5,8; 6) i Excel, og får ut 5,51.

Vi har tidligere beregnet at gjennomsnittsproduksjonen er 217 enheter.

Et 98 prosent konfidensintervall blir derfor om lag

[217 − 5,51, 217 + 5,51 = [211,49, 222,51]

Tilbake til oppgaven

Oppgave 7:

Basert på at 6 tilfeldige observasjoner gir at gjennomsnittlig antall produserte støtfangere er X = 217 og at produksjonens standardavvik er S = 6, skal vi lage og sammenlikne et 95 % konfidensintervall basert på normalfordeling, med et basert på t-fordeling.

I et 95 % konfidensintervall er ${\large \frac{\alpha}{2}} = {\large \frac{1 − 0{,}95}{2}} = 0{,}025$.

Vi vet fra tidligere at

${\large z_{0{,}025}} \approx 1{,}96$, eller vi slår det opp i (normal) kvantiltabellen.

Basert på normalfordelingen får vi derfor følgende 95 % konfidensintervall:

$217 \pm 1{,}96 \cdot {\large \frac{6}{\sqrt{6}}} \approx [212{,}2, \: 221{,}8]$

Siden vi har 6 observasjoner, får vi v = 6 − 1 = 5 frihetsgrader. 

Vi slår opp ${\large t_{0{,}025 \, (5)}}$ i (t) kvantiltabellen, og finner 2,571.

Basert på t-fordelingen får vi derfor følgende 95 % konfidensintervall:

$217 \pm 2{,}57 \cdot {\large \frac{6}{\sqrt{6}}} \approx [210{,}7, \: 223{,}3]$

Konfidensintervallet blir en del bredere med t-fordeling enn med normalfordeling, dette skyldes at usikkerheten er stor når standardavviket er estimert ut fra så lite som 6 målinger.

Tilbake til oppgaven

Oppgave 8:

Basert på 6 tilfeldige observasjoner med gjennomsnitt 217 og utvalgsstandardavvik 6 skal vi lage et 95 % konfidensintervall basert på t-fordeling ved hjelp av Excel.

I Excel skriver vi =konfidens.t(1-0,95; 6; 6) og får ut 6,30.

Så et 95 % konfidensintervall blir

217 ± 6,30 ≈ [210,7, 223,3]

Som er det samme som vi fant da vi gjorde beregningen for hånd i oppgave 7.

Tilbake til oppgaven

Oppgave 9:

Basert på at 35 av 2000 tilfeldige ladere er målt til å være defekte, skal vi estimere sannsynligheten for at en vilkårlig lader er defekt, og finne et 95 % konfidensintervall for denne sannsynligheten.

Et forventningsrett estimat for sannsynligheten for at en lader er defekt vil være andelen defekte ladere i utvalget. Altså:

$\hat p = {\large \frac{35}{2000}} = 0{,}0175$, altså 1,75 %.

Estimert standardavvik til estimatoren blir

$\sqrt{\large \frac{\hat p(1− \hat p)}{n}} = \sqrt{\large \frac{0{,}0175(1 − 0{,}0175)}{2000}} \approx 0{,}0029$.

En rapportering av sannsynligheten for at en lader er defekt blir da

0,0175 ± 0,067

I et 95 % konfidensintervall er ${\large \frac{\alpha}{2}} = {\large \frac{1 − 0{,}95}{2}} = 0{,}025$.

Vi vet fra tidligere at

${\large z_{0{,}025}} \approx 1{,}96$, eller vi slår det opp i (normal) kvantiltabellen.

Så et 95 % konfidensintervall blir

0,0175 ± 1,96 · 0,0029 ≈ [0,0118, 0,0232], mellom 1,18 % og 2,32 %.

Tilbake til oppgaven

Hypotesetesting

Oppgave 1:

Basert på at hundre terningkast gir 20 seksere, skal vi sette opp nullhypotese og alternativ hypotese for at terningen gir for mange seksere, og teste hypotesen med et signifikansnivå på 5 %.

Den alternative hypotesen er at terningen gir for mange seksere, det vil si at sannsynligheten for å få seks er mer enn en sjettedel, slik den er på en rettferdig terning. Kaller vi sannsynligheten for å få en sekser for p, har vi

$H_A: p > \frac{\displaystyle 1}{\displaystyle 6}$.

Nullhypotesen blir da at terningen er rettferdig, med sannsynlighet lik en sjettedel for å få en sekser:

$H_0: p = \frac{\displaystyle 1}{\displaystyle 6}$.

Grensen for forkastningsområdet blir zα = z0,05 ≈ 1,6449, som vi finner ved å slå opp 0,05 i (kvantil)normalfordelingstabellen. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,05) i Excel eller inversnormalfordeling(0, 1, 1 – 0.05) i GeoGebra.

Testobservatoren blir

$Z = \frac{\displaystyle X − np_0}{\displaystyle \sqrt{np_0(1 − p_0)}} = \frac{\displaystyle 20 − 100 \cdot \frac{1}{6}}{\displaystyle \sqrt{100 \cdot \frac{1}{6} \Big(1 − \frac{1}{6} \Big)}} \approx 0{,}8944$.

Siden Z ≈ 0,8944 $\ngtr$ zα ≈ 1,6449, kan vi ikke forkaste nullhypotesen på signifikansnivå 5 %. 20 seksere i 100 kast gir altså ikke grunnlag for å si at terningen gir for mange seksere.

Tilbake til oppgaven

Oppgave 2:

Vi skal utføre samme test som i oppgave 1, men nå basert på at 1000 terningkast gir 200 seksere. Hypotesene blir de samme, og grensen for forkastningsområdet det samme, zα = z0,05 ≈ 1,6449.

Testobservatoren blir nå

$Z = \frac{\displaystyle X − np_0}{\displaystyle \sqrt{np_0(1 − p_0)}} = \frac{\displaystyle 200 − 1000 \cdot \frac{1}{6}}{\displaystyle \sqrt{1000 \cdot \frac{1}{6} \Big(1 − \frac{1}{6} \Big)}} \approx 2{,}8284$.

Z ≈ 2,8284 > zα ≈ 1,6449. Testobservatoren ligger langt inni forkastningsområdet, og vi forkaster nullhypotesen på signifikansnivå 5 %. 200 av 1000 seksere gir altså grunnlag for å si at terningen gir for mange seksere.

Sammenlikninger vi med oppgave 1, ser vi at det relative antallet seksere er det samme i begge tilfeller: $\frac{\displaystyle 20}{\displaystyle 100} = \frac{\displaystyle 200}{\displaystyle 1000} = 0{,}2$. Men å få 200 seksere på 1000 kast er altså mye mindre sannsynlig enn å få 20 på 100 kast. Det kommer av at den forventede spredningen, altså standardavviket, blir mindre jo flere forsøk vi gjør. 200 av 1000 seksere vil faktisk gi forkastning av nullhypotesen på så lite signifikansnivå som 0,25 %.

Tilbake til oppgaven

Oppgave 3:

Vi skal sette opp og gjennomføre en hypotesetest med et signifikansnivå på 1 % på om oljeinnholdet i dressingpakker er over 10 ml, når gjennomsnittet i 25 pakker er målt til 10,3 ml, og produksjonen har et standardavvik på 0,65 ml.

Hypotesene blir HA: μ > 10, H0: μ = 10.

Vi har X = 10,3, og σ = 0,65.

Vi vet fra eksempel 3 at grensen for forkastningsområdet er zα = z0,05 ≈ 1,6449.

Testobservatoren blir:

$Z = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{\sigma}{\sqrt n}} = \frac{\displaystyle 10{,}3 − 10}{\displaystyle \frac{0{,}65}{\sqrt{25}}} \approx 2{,}31$.

Siden Z ≈ 2,31 $\ngtr$ zα ≈ 2,3263, kan vi ikke forkaste nullhypotesen på 1 % signifikansnivå. Målingene indikerer altså ikke at dressingene i snitt inneholder mer enn 10 ml. olje.

Tilbake til oppgaven

Oppgave 4:

Basert på at 15 målinger av svartid på en servicetelefon gir et gjennomsnitt på 37 sekunder med et standardavvik på 14 sekunder skal vi sette opp og gjennomføre en hypotesetest på signifikansnivå 5 % på om oppgitt gjennomsnittlig ventetid på 30 sekunder er lav.

Hypotesene blir HA: μ > 30, H0: μ = 30.

Siden vi baserer oss på utvalgsstandardavviket, bruker vi t-fordeling i testen. Antall frihetsgrader blir 15 − 1 = 14. For å finne grensen til forkastningsområdet slår vi opp i (kvantil) t-fordelingstabellen, med t0,05 (14), der det står 1,761. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,05; 14) i Excel eller inverstfordeling(14, 1 – 0.05) i GeoGebra.

Testobservatoren blir

$T = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 37 − 30}{\displaystyle \frac{14}{\sqrt{15}}} \approx 1{,}94$.

Siden T ≈ 1,94 > t0,05 (14) ≈ 1,761, kan vi forkaste nullhypotesen, og har på 5 % signifikansnivå grunnlag for å si at gjennomsnittlig ventetid er over 30 sekunder.

Tilbake til oppgaven

Oppgave 5:

Basert på at innholdet i 30 glass syltetøy i gjennomsnitt er målt til 47,7 % bær, med et standardavvik på 5,7 %, skal vi sette opp og gjennomføre hypotesetester på signifikansnivå 5 % og signifikansnivå 1 % på om syltetøyet inneholder mindre enn fabrikantens påstand om minst 50 % bær.

Hypotesene blir HA: μ < 50, H0: μ = 50.

Siden vi baserer oss på utvalgsstandardavviket, bruker vi t-fordeling i testen. Antall frihetsgrader blir 30 − 1 = 29. For å finne grensene til forkastningsområdene slår vi opp i (kvantil) t-fordelingstabellen, med henholdsvis t0,05 (29), der det står 1,699, og t0,01 (29), der det står 2,462. Alternativt kan vi finne disse verdiene ved å skrive henholdsvis  =t.inv(1 – 0,05; 29) og =t.inv(1 – 0,01; 29) i Excel, eller henholdsvis inverstfordeling(29, 1 – 0.05) og inverstfordeling(29, 1 – 0.01) i GeoGebra.

Siden vi har en venstresidig test, blir grensene −1,699 og −2,462.

Testobservatoren blir

$T = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 47{,}7 − 50}{\displaystyle \frac{5{,}7}{\sqrt{30}}} \approx −2{,}21$.

Siden T ≈ −2,21 < −t0,05 (29) ≈ −1,699, kan vi på 5 % signifikansnivå forkaste nullhypotesen og akseptere hypotesen om at syltetøyet har for lite bær.

Men siden T ≈ −2,21 $\nless$t0,01 (29) ≈ −2,462, kan vi på 1 % nivå ikke forkaste nullhypotesen.

Tilbake til oppgaven

Oppgave 6:

Basert på 15 stikkprøver av sukkermengde med en vekt på gjennomsnittlig 82,5 gram og et standardavvik på 0,6 gram skal vi sette opp og gjennomføre en hypotesetest på signifikansnivå 1 % på om gjennomsnittlig sukkermengde er 83 gram.

Siden vi baserer oss på utvalgsstandardavviket, må vi bruke t-fordeling i testen, med 15 − 1 = 14 frihetsgrader. For å finne grensene til forkastningsområdet slår vi opp i (kvantil) t-fordelingstabellen, med t0,01/2 (14) = t0,005 (14), der det står 2,977. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,005; 14) i Excel eller inverstfordeling(14, 1 – 0.005) i GeoGebra.

Testobservator blir $T = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 82{,}5 − 83}{\displaystyle \frac{0{,}6}{\sqrt{15}}} \approx −3{,}227$.

Siden |T| ≈ 3,227 > t0,005 (14) ≈ 2,977, kan vi på 1 % signifikansnivå forkaste nullhypotesen og akseptere hypotesen om at sukkermengden ikke er korrekt.

Tilbake til oppgaven

Samvariasjon

Oppgave 1:

Vi har gitt to datasett X og Y med 4 korresponderende verdier:

X1 = 242 X2 = 266 X3 = 218 X4 = 234
Y1 = 363 Y2 = 399 Y3 = 327 Y4 = 351

og skal beregne

  1. Gjennomsnittet i hvert av settene.
      
    $\overline X = \frac{\displaystyle 242 + 266 + 218 + 234}{\displaystyle 4} = 240$
     
    $\overline Y = \frac{\displaystyle 363 + 399 + 327 + 351}{\displaystyle 4} = 360$
     
  2. Standardavviket i hvert av settene.
     
    Summen av kvadratavvikene i X er
     
    (242 − 240)2 + (266 − 240)2 + (218 − 240)2 + (234 − 240)2 = 1200
     
    Og standardavviket blir
     
    $S_X = \sqrt {\frac{\displaystyle 1200}{\displaystyle 4-1}} = 20$
     
    Summen av kvadratavvikene i Y er
     
    (363 − 360)2 + (399 − 360)2 + (327 − 360)2 + (351 − 360)2 = 2700
     
    Og standardavviket blir
     
    $S_Y = \sqrt {\frac{\displaystyle 2700}{\displaystyle 4-1}} = 30$
     
  3. Kovariansen mellom settene.
     
    Summen av produktene av avstandene mellom verdi og gjennomsnitt i settene er
     
    (242 − 240)(363 − 360) + (266 − 240)(399 − 360) + (218 − 240)(327 − 360) + (234 − 240)(351 − 360) = 1800
     
    Og kovariansen blir
     
    $Cov(X, Y) =  \frac{\displaystyle 1800}{\displaystyle 4-1} = 600$
     
  4. Korrelasjonskoeffisienten mellom settene.
     
    $R(X, Y) =  \frac{\displaystyle Cov(X, Y)}{\displaystyle S_X S_Y} = \frac{\displaystyle 600}{\displaystyle 20 \cdot 30} = 1$

Tolkningen av korrelasjonskoeffsienten er at vi har perfekt samvariasjon. Hvis vi kontrollregner, ser vi at det stemmer, for hvert element i Y er lik det tilhørende elementet i X multiplisert med 1,5.

Tilbake til oppgaven

Sammenlikne datasett

Oppgave 1:

En bedrift sammenlikner to maskiner for å se om det er forskjell i mengden sukker de tilsetter i en matvare. Maskin X arbeider med et standardavvik på 0,11 og maskin Y med et standardavvik på 0,13. 

60 prøver av maskin X gir et snitt på 10,107 gram sukker, 75 prøver av maskin Y gir et snitt på 10,061 gram sukker.

Så skal vi sette opp hypoteser og gjennomføre en hypotesetest på 5 % signifikansnivå på om de to maskinene tilsetter forskjellig mengde sukker.

Vi har altså X = 10,107, Y = 10,061, σX = 0,11, σY = 0,13, nX = 60, nY = 75.

Hypotesene blir HA: μXμY , H0: μXμY .

Testobservatoren blir

$Z = \frac{\displaystyle 10{,}107 − 10{,}061}{\displaystyle \sqrt{\frac{(0{,}11)^2}{60} + \frac{(0{,}13)^2}{75}}} \approx 2{,}2261$

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |Z| > zα/2

Med 5 % signifikansnivå blir α/2 = 0,05/2 = 0,025.

Vi slår opp i (kvantil)normalfordelingstabellen med α = 0,025, der det står 1,9600. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,025) i Excel eller inversnormalfordeling(0, 1, 1 – 0.025) i GeoGebra.

Siden |Z| ≈ 2,2261 > zα/2 ≈ 1,9600, kan vi forkaste vi nullhypotesen. Undersøkelsen bekrefter at det er forskjell på sukkermengdene.

Tilbake til oppgaven

Oppgave 2:

Frukthøsten til 13 kirsebærtrær av type X og 12 kirsebærtrær av type Y er vist i tabellen under, og vi skal sette opp og gjennomføre en hypotesetest på 5 % signifikansnivå på om de to typene trær gir forskjellig mengde frukt.

 Type X 44 44 56 46 47 38 58 53 49 35 46 30 41 
 Type Y 35 47 55 29 40 39 32 41 42 57 51 39   

Hypotesene blir HA: μXμY , H0: μXμY .

Vi har altså nX = 13, nY = 12.

Fra kalkulator eller PC får vi:

X = 45,1538

Y = 42,25

SX ≈ 7,9984

SY ≈ 8,7399

Vi beregner:

$S_P = \sqrt \frac{\displaystyle {S_X}^2(n^{\phantom 1}_X − 1) + {S_Y}^2(n^{\phantom 1}_Y − 1)}{\displaystyle n^{\phantom 1}_X + n^{\phantom 1}_Y − 2} \approx \sqrt \frac{\displaystyle {7{,}9984}^2(13 − 1) + {8{,}7399}^2(12 − 1)}{\displaystyle 13 + 12 − 2} \approx 8{,}3612$

Testobservatoren blir da

$T = \frac{\displaystyle \overline X − \overline Y}{\displaystyle S_P \sqrt{\frac{1}{n^{\phantom 1}_X} + \frac{1}{n^{\phantom 1}_Y}}} \approx \frac{\displaystyle 45{,}1538 − 42{,}25}{\displaystyle 8{,}3612 \sqrt{\frac{1}{13} + \frac{1}{12}}} \approx 0{,}8675$.

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |T| > tα/2 (v)

Med 5 % signifikansnivå blir α/2 = 0,05/2 = 0,025

Vi slår opp i (t) kvantiltabellen med a = 0,025 og v = 13 + 12 − 2 = 23, der det står 2,069. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,025; 23) i Excel eller inverstfordeling(23, 1 – 0.025) i GeoGebra.

Siden |T| ≈ 0,8675 $\ngtr$ tα/2 ≈ 2,069, kan vi ikke forkaste nullhypotesen. Undersøkelsen gir ikke grunnlag for å si at den ene typen trær gir mer kirsebær enn den andre.

Tilbake til oppgaven

Oppgave 3:

Basert på blodtrykket til 15 pasienter før og etter bruk av en medisin, vist i tabellen under, skal vi sette opp og gjennomføre en hypotesetest på 5 % signifikansnivå på om medisinen som en bieffekt reduserer blodtrykket.

 Før 70 80 72 76 76 76 72 78 82 64 74 92 74 68 84 
 Etter 78 72 62 70 58 66 68 52 64 72 74 60 74 72 74

Her gir det bare mening å gjøre en parvis test. Vi beregner først differansen mellom før og etter:

 Differanse 2 8 10 6 18 10 4 26 18 −8 0 32 0 −4 10 

Vi kaller «før» for X, «etter» for Y og differansen for D.

Hypotesene blir HA: μXμY , H0: μX ≤ μY .

Fra kalkulator eller PC får vi:

X = 8,8

SD ≈ 10,9753

Testobservatoren blir

$T = \frac{\displaystyle \overline D}{\displaystyle S_D \frac{1}{\sqrt n}} \approx \frac{\displaystyle 8{,}8}{\displaystyle 10{,}975 \frac{1}{\sqrt{15}}} \approx 3{,}1054$.

Siden vi har en ensidig test, skal vi forkaste nullhypotesen hvis |T| > tα (v)

Med 5 % signifikansnivå blir α = 0,05

Vi slår opp i (t) kvantiltabellen med a = 0,05 og v = 15 − 1 = 14, der det står 1,761. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,05; 14) i Excel eller inverstfordeling(14, 1 – 0.05) i GeoGebra.

Siden |T| ≈ 3.1054 > tα (v) ≈ 1,761, kan vi forkaste nullhypotesen. Testen gir absolutt grunnlag for å si at medisinen gir redusert blodtrykk.

Tilbake til oppgaven

Oppgave 4:

En bedrift skal undersøke om det er forskjell i sannsynlighetene for defekter ved to produksjonslinjer for bukser. De finner 147 av 2500 defekte ved første produksjonslinje og 151 av 2000 ved andre. Vi skal sette opp og på 5 % signifikansnivå teste en hypotese om at sannsynligheten for defekter er forskjellig ved de to linjene.

Vi kaller sannsynligheten for defekt ved linje 1 for p1 og sannsynligheten for defekt ved linje 2 for p2. Hypotesene blir

HA: p1p2 mot H0: p1p2.

Vi har n1 = 2500, n2 = 2000, X1 = 147, X2 = 151.

Vi estimerer

$\hat p_1 = \frac{\displaystyle 147}{\displaystyle 2500} =  0{,}0588$.

$\hat p_2 = \frac{\displaystyle 151}{\displaystyle 2000} = 0{,}0755$.

$\hat p = \frac{\displaystyle 147 + 151}{\displaystyle 2500 + 2000} \approx 0{,}0662$.

Og vi får

$Z \approx \frac{\displaystyle 0{,}0588 − 0{,}0755}{\displaystyle \sqrt{0{,}0662(1 − 0{,}0662)(\frac{\displaystyle 1}{\displaystyle 2500} + \frac{\displaystyle 1}{\displaystyle 2000})}} \approx −2{,}239$.

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |Z| > zα/2

Med 5 % signifikansnivå blir α/2 = 0,05/2 = 0,025.

I (kvantil)normalfordelingstabellen finner vi at z0,025 ≈ 1,9600. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,025) i Excel eller inversnormalfordeling(0, 1, 1 – 0.025) i GeoGebra.

Siden |Z| ≈ 2,239 > zα/2 ≈ 1,9600, forkaster vi nullhypotesen og aksepterer den alternative hypotesen om at det er forskjell i sannsynligheten for defekt ved de to linjene.

Tilbake til oppgaven

Løsningsforslag, sannsynlighetsfordelinger

Binomisk fordeling

Oppgave 1:

X betegner antall kron i 8 kast med en juksemynt der sannsynligheten for kron er 0,6, og vi skal beregne de tre sannsynlighetene under ved bruk av formelen for binomisk fordeling, $P(X = x) = {\large \binom{n}{x}} p^x (1 − p)^{(n − x)}$, og kontrollere svarene i Excel eller GeoGebra.

Her er p = 0,6 siden sannsynligheten for kron er 0,6, og n = 8 fordi vi kaster 8 ganger.

  1. P(X = 4)
     Formelen gir
    ${\large \binom{8}{4}} (0{,}6)^4 (1 − 0{,}6)^{(8 − 4)} \approx 0{,}2322$
     I Excel og GeoGebra skriver vi henholdsvis =binom.fordeling.n(4; 8; 0,6; usann) og fordelingbinomial(8, 0.6, 4, false).
     
  2. P(X ≤ 2)
    Dette er summen av sannsynlighetene for at X er 0, 1 eller 2:
    $P(X = 0) + P(X = 1) + P(X = 2) =$
    ${\large \binom{8}{0}} (0{,}6)^0 (1 – 0{,}6)^{(8 \text{ – } 0)} + {\large \binom{8}{1}} (0{,}6)^1 (1 – 0{,}6)^{(8 \text{ – } 1)} + {\large \binom{8}{2}} (0{,}6)^2 (1 – 0{,}6)^{(8 \text{ – } 2)} \approx $
    $0{,}0007 + 0{,}0079 + 0{,}0413 = 0{,}0498$
    I Excel og GeoGebra skriver vi henholdsvis =binom.fordeling.n(2; 8; 0,6; sann) og fordelingbinomial(8, 0.6, 2, true).
     
  3. P(X ≤ 6)
     I stedet for å summere sannsynlighetene for at X er 0, 1, 2, 3, 4, 5 eller 6, er det enklere å benytte seg av den komplementære hendelsen, X > 6, altså at X er 7 eller 8.
    $P(X \le 6) = 1 − P(X > 6) = 1 − P(X = 7) − P(X = 8) =$
    $1 – {\large \binom{8}{7}} (0{,}6)^7 (1 – 0{,}6)^{(8 \text{ – } 7)} – {\large \binom{8}{8}} (0{,}6)^8 (1 – 0{,}6)^{(8 \text{ – } 8)} \approx$
    $1 – 0{,}0896 – 0{,}0168 = 0{,}8936$
    I Excel og GeoGebra skriver vi henholdsvis =binom.fordeling.n(6; 8; 0,6; sann) og fordelingbinomial(8, 0.6, 6, true).

Så skal vi vurdere om P(X = 7) er større, lik, eller lavere enn P(X = 1).

P(X = 7) tilsvarer «7 kron», mens P(X = 1) tilsvarer «7 mynt». Siden kron har høyere sannsynlighet enn mynt, vil en overvekt av kron være mer sannsynlig enn en tilsvarende overvekt av mynt, så P(X = 7) > P(X = 1). Hadde sannsynlighetene for mynt og kron vært like, p = 0,5, ville vi hatt P(X = 7) = P(X = 1).

Tilbake til oppgaven

Oppgave 2:

Vi skal finne E(X) og Var(X) når

  1. X er antall kron i 10 kast med en rettferdig mynt.
    Dette er en binomisk situasjon der kron betyr suksess og mynt betyr fiasko. Vi har n = 10 og p = 0,5, så vi får
    E(X) = n · p = 10 · 0,5 = 5.
    Var(X) = n · p(1 − p) = 10 · 0,5(1 − 0,5) = 2,5.
     
  2. X er antall seksere i 5 kast med en rettferdig terning.
    Dette er en binomisk situasjon der «sekser» betyr suksess og «ikke sekser» betyr fiasko. Vi har n = 5 og $p = {\large \frac{1}{6}} \approx 0{,}167$, så vi får
    E(X) = n · p = 5 · 0,167 ≈ 0,84.
    Var(X) = n · p(1 − p) = 5 · 0,167(1 − 0,167) ≈ 0,70.

Tilbake til oppgaven

Hypergeometrisk fordeling

Oppgave 1:

I en forening med 65 medlemmer er 13 negative til et forslag. Vi velger 20 representanter tilfeldig fra gruppen og skal finne sannsynligheten for at et visst antall er negative. Lar vi X være antall negative representanter, er P(X) hypergeometrisk fordelt med N = 65 elementer, av disse er M = 13 spesielle, altså negative. Vi trekker n = 20 ganger og skal finne sannsynligheten for at

  1. Ingen av representantene er negative.
    Vi får
    $P(X = 0) = \frac{\displaystyle \binom{13}{0} \cdot \binom{65 − 13}{20 − 0}}{\displaystyle \binom{65}{20}} \approx 0{,}0044$.
    Det er ca. 0,44 % sannsynlighet for at ingen er negative.
    I Excel og GeoGebra skriver vi henholdsvis =hypgeom.fordeling.n(0; 20; 13; 65; usann) og fordelinghypergeometrisk(65, 13, 20, 0, false).
     
  2. Én av representantene er negativ.
    Vi får
    $P(X = 1) = \frac{\displaystyle \binom{13}{1} \cdot \binom{65 − 13}{20 − 1}}{\displaystyle \binom{65}{20}} \approx 0{,}0350$.
    Det er ca. 3,5 % sannsynlighet for at én er negativ.
    I Excel og GeoGebra skriver vi henholdsvis =hypgeom.fordeling.n(1; 20; 13; 65; usann) og fordelinghypergeometrisk(65, 13, 20, 1, false).
     
  3. To eller flere av representantene er negative.
    Dette kan vi beregne som
    P(X = 2) + P(X = 3) + … + P(X = 20), men det er mye enklere å se på den komplementære hendelsen. Da kan vi også bruke det vi har funnet i punkt 1 og 2.
    Vi får
    P(X ≥ 2) = 1 − P(X = 0) − P(X = 1) ≈ 1 − 0,004 − 0,035 = 0,9610.
    Det er ca. 96,10 % sannsynlighet for at to eller flere er negative.
    I Excel og GeoGebra skriver vi henholdsvis =1 – hypgeom.fordeling.n(1; 20; 13; 65; sann) og 1 – fordelinghypergeometrisk(65, 13, 20, 1, true).

RegnearkLast ned regneark med beregningene fra oppgave 1
 

​Tilbake til oppgaven

Oppgave 2

Vi skal bruke formelen for hypergeometrisk fordeling til å finne sannsynligheten for å få henholdsvis 5 og 4 rette i Lotto. Vi trekker da 7 tall fra en mengde på 34, der 7 er spesielle (vinnertallene), og beregner hva sannsynligheten for å få henholdsvis 5 og 4 av de spesielle er. Vi får

$P(X = 5) = \frac{\displaystyle \binom{7}{5} \cdot \binom{34 − 7}{7 − 5}}{\displaystyle \binom{34}{7}} \approx 1{,}3702 \cdot 10^{−3}$.

$P(X = 4) = \frac{\displaystyle \binom{7}{4} \cdot \binom{34 − 7}{7 − 4}}{\displaystyle \binom{34}{7}} \approx 1{,}9030 \cdot 10^{−2}$.

Det er om lag 0,137 % sannsynlighet for å få 5 rette, og om lag 1,903 % sannsynlighet for å få 4 rette.

​Tilbake til oppgaven

Oppgave 3

Vi skal finne E(X) og Var(X) i et utvalg der N = 65, M = 13 og n = 20. Vi får

$E(X) = 20 \cdot {\large \frac{13}{65}} = 4$.

$Var(X) = \Big({\large \frac{65 − 20}{65 − 1}} \Big) \cdot 20 \cdot {\large \frac{13}{65}} \cdot \Big(1 − {\large \frac{13}{65}} \Big) = 2{,}25$.

​Tilbake til oppgaven

Poissonfordeling

Oppgave 1:

Vi vet at det i en vannprøve i gjennomsnitt er to hoppekreps, at forekomsten av hoppekreps er poissonfordelt, og skal finne sannsynligheten for at en tilsvarende vannprøve inneholder et gitt antall hoppekreps ved hjelp av formelen for poissonfordeling, $P(X = x) = \frac{\displaystyle \lambda^x}{\displaystyle x!}e^{− \lambda}$.

  1. Sannsynligheten for ingen hoppekreps.
    $P(X = 0) = \frac{\displaystyle 2^{0}}{\displaystyle 0!}e^{−2} \approx 0{,}1353$.
    I Excel og GeoGebra skriver vi henholdsvis =poisson.fordeling(0; 2; usann) og fordelingpoisson(2, 0, false).
     
  2. Sannsynligheten for én hoppekreps
    $P(X = 1) = \frac{\displaystyle 2^{1}}{\displaystyle 1!}e^{−2} \approx 0{,}2707$.
    I Excel og GeoGebra skriver vi henholdsvis =poisson.fordeling(1; 2; usann) og fordelingpoisson(2, 1, false).
     
  3. Sannsynligheten for to eller flere hoppekreps. Vi ser på den komplementære hendelsen:
    $P(X \ge 2) = 1 − P(X = 1) − P(X = 0) \approx 1 − 0{,}1353 − 0{,}2707 = 0{,}5940$.
    I Excel og GeoGebra skriver vi henholdsvis =1 – poisson.fordeling(1; 2; sann) og 1 – fordelingpoisson(2, 1, true).

RegnearkLast ned regneark med beregningene fra oppgave 1
 

​Tilbake til oppgaven

Tilnærme fordelinger

Oppgave 1:

Innbyggerne i en by med 10 000 innbyggere er delt akkurat på midten når det gjelder synet på kommunesammenslåing. Vi trekker 100 innbyggere tilfeldig og skal beregne sannsynligheten for at den gruppen også er delt akkurat på midten.

Her har vi altså N = 10 000, M = 5000, n = 100, og skal finne P(X = 50).

  1. Vi skal først bruke hypergeometrisk fordeling og får:
    $P(X = 50) = \frac{\displaystyle \binom{5000}{50} \cdot \binom{10000 − 5000}{100 − 50}}{\displaystyle \binom{10000}{100}} \approx 0{,}0800$.
    Vi ser at mellomregningene involverer svært høye tall, for eksempel er ${\large \binom{10000}{100}} \approx 6{,}52 \cdot 10^{241}$.
     
  2. Så skal vi avgjøre om en tilnærming med binomisk fordeling vil være god. Vi har n = 100 og ${\large \frac{N}{20}} = 500$. Siden $n \le {\large \frac{N}{20}}$, er tilnærmingen god.
     
  3. Vi bruker binomisk fordeling og får: $P(X = 50) = {\large \binom{100}{50}} (0,5)^{50} (1 − 0,5)^{100 − 50} \approx 0{,}0796$.
     
  4. Med fire siffer bak komma ble feilen 0,0800 − 0,0796 = 0,0004.

Tilbake til oppgaven

Oppgave 2:

Vi skal bruke binomisk sannsynlighetsfordeling for å finne sannsynligheten for å få spar ess minst én gang når vi trekker 75 ganger fra en komplett kortstokk. Vi har n = 75 og $p = {\large \frac{1}{52}} \approx 0{,}0192$. Det enkleste er å basere seg på sannsynligheten for den komplementære hendelsen «aldri spar ess»:

$P(X \ge 1) = 1 − P(X = 0) = 1 − {\large \binom{75}{0}} (0{,}0192)^0 (1 − 0{,}0192)^{75 − 0} \approx 0{,}7664$.

Så skal vi avgjøre om vi kan bruke poissonfordeling til å beregne denne sannsynligheten. Vi har n = 75, som er innenfor grensa på n > 50, og vi har p = 0,0192, som er innenfor grensa på p ≤ 0,05, så tilnærmingen bør være god. Vi har λ = 75 · 0,0192 = 1,44 og får

$P(X \ge 1) = 1 − P(X = 0) = 1 − {\large \frac{(1{,}44)^0}{0!}}e^{−1{,}44} \approx 0{,}7631$

Tilbake til oppgaven

Normalfordelingen

Oppgave 1:

Vi skal bruke normalfordelingstabellen til å finne

    1. P(Z ≤ 0,85)
      Det vil si G(0,85).
      Vi leser av tabellen der rad 0,8 krysser kolonne 0,05, der det står
      0,8023.
       
    2. P(Z ≤ −1,21)
      Det vil si G(−1,21) = 1 − G(1,21)
      Vi leser av tabellen der rad 1,2 krysser kolonne 0,01, der det står 0,8669.
      Så vi får 1 − 0,8669 = 0,1131.
       
    3. P(−0,22 ≤ Z ≤ 0,22)
      Det vil si G(0,22) − G(−0,22) = G(0,22) − [1 − G(0,22)] = 2 · G(0,22) − 1
      Vi leser av tabellen der rad 0,2 krysser kolonne 0,02, der det står 0,5871.
      Så vi får 2 · 0,5871 − 1 = 0,1742.

Tilbake til oppgaven

Oppgave 2:

På en eksamen er resultatene N(14, 22), og vi skal finne hvor mange som kan forventes å ikke stå, det vil si få 12 poeng eller mindre. Vi skal beregne ved hjelp av normalfordelingstabellen, Excel og GeoGebra.

Det vi skal beregne er P(X ≤ 12) i den gitte fordelingen. Vi gjør en standardisering og finner ut at dette tilsvarer $G({\large \frac{12 − 14}{2}}) = G(−1) = 1 − G(1)$. Vi går inn i normalfordelingstabellen, rad 1,0 og kolonne 0,00, der det står 0,8413.

P(X < 12) ≈ 1 − 0,8413 = 0,1587. Om lag 15,8 % kan forventes å ikke stå.

I Excel skriver vi =norm.fordeling(12; 14; 2; sann) og får 0,1587.

I GeoGebra skriver vi fordelingnormal(14, 2, 12) og får det samme. (Muligens etter at vi har brukt menyen «Innstillinger» – «Avrunding» til å sette at GeoGebra skal vise tall med 4 desimaler.

Tilbake til oppgaven

Løsningsforslag, grunnleggende statistikk

Introduksjon til statistikk

Oppgave 1:

Vi påstår at de fleste mennesker har mer enn gjennomsnittlig antall armer og spør om dette er korrekt, og hva i så fall problemet med denne påstanden er.

Påstanden er statistisk korrekt fordi ingen har mer enn 2 armer, men noen mangler én arm eller begge armene. Det betyr at gjennomsnittlig antall armer er litt under 2, og alle som har 2 armer ligger derved over gjennomsnittet. Problemet er at gjennomsnittet i dette tilfellet ikke gir noe godt bilde av virkeligheten. Median, som vi diskuterer i artikkelen om måltall i statistikk vil være mye bedre å bruke her.

Tilbake til oppgaven

Grafiske presentasjoner

Oppgave 1:

Basert på disse karakterene: 1, 4, 5, 5, 4, 1, 3, 4, 2, 2, 2, 4, 4, 4, 3, 3, 1, 3, 2, 5, 6, 3, 1, 4, 2, skal vi lage:

1:
En frekvenstabell som viser fordeling av karakterene, inkludert relativ frekvens i prosent.
Vi teller opp, og finner ut at karakterene fordeler seg slik: 4 enere, 5 toere, 5 treere, 7 firere, 3 femmere og 1 sekser. Totalt er det 25 karakterer, så de relative frekvensene blir:

enere ${\large \frac{4}{25}} = 0{,}16$, altså 16 %
toere ${\large \frac{5}{25}} = 0{,}20$, altså 20 %
treere ${\large \frac{5}{25}} = 0{,}20$, altså 20 %
firere ${\large \frac{7}{25}} = 0{,}28$, altså 28 %
femmere ${\large \frac{3}{25}} = 0{,}12$, altså 12 %
seksere ${\large \frac{1}{25}} = 0{,}04$, altså 4 %

Så frekvenstabellen blir slik:

Karakter 1 2 3 4 5 6
Frekvens 4 5 5 7 3 1
Relativ frekvens 16 % 20 % 20 % 28 % 12 % 4 %

2:
En frekvenstabell som viser fordeling av karakterene gruppert som 1-2, 3-4 og 5-6, inkludert relativ frekvens i prosent.
Frekvensene og de relative frekvensene finner vi i tabellen over. 1-2: 4 + 5 = 9 og 16 % + 20 % = 36 %. 3-4: 5 + 7 = 12 og 24 % + 24 % = 48 %. 5-6: 3 + 1 = 4 og 12 % + 4 % = 16 %. Frekvenstabellen blir seende slik ut

Karakter 1-2 3-4 5-6
Frekvens 9 12 4
Relativ frekvens 36 % 48 % 16 %

3:
Et søylediagram som illustrerer karakterfordelingen i punkt 2.
Vi åpner et regneark, for eksempel Excel og legger inn følgende data:

«1-2» 9
«3-4» 12
«5-6» 4

(Vi har brukt anførselstegn for å unngå at regnearket tolker teksten i venstre kolonne som datoer. Alternativt kunne vi formatert kolonna som «tekst» før vi skrev inn.)
Så markerer vi cellene med data, velger «Sett inn» – «Stolpe», velger stolpetype, og får et stolpediagram likt det under:

Søylediagram grupperte karaktererdata

Tilbake til oppgaven

Datainnsamling

Oppgave 1:

Du ønsker å finne ut hvor populært kino er i forhold til å se film hjemme, går i byen en kveld og intervjuer tilfeldige forbipasserende.

Naturligvis er det liten grunn til å tro at dette utvalget er representativt. Det er jo mer sannsynlig at du treffer kinogjengerne på byen enn de som sitter hjemme og ser på film.

Tilbake til oppgaven

Måltall i statistikk

Oppgave 1:

6 tellinger av busspassasjerer har gitt henholdsvis 20, 34, 16, 27, 8 og 9 passasjerer, og vi skal beregne gjennomsnitt for passasjertallet.

Gjennomsnittet blir $\overline X = {\large \frac{20 + 34 + 16 + 27 + 8 + 9}{6}} = 19$.

Gjennomsnittlig passasjertall er 19.

I et regneark som Excel legger vi inn dataene i hver sin celle, la oss si at det er A1 … A6. Så setter vi markøren i cella der vi vil ha utført beregningen, og skriver =gjennomsnitt(A1: A6). Regnearket beregner gjennomsnittet til 19.

I GeoGebra kan vi gjøre tilsvarende med funksjonen gsnitt, vi kan også skrive gsnitt(20, 34, 16, 27, 8, 9) direkte i inntastingsfeltet.

Tilbake til oppgaven

Oppgave 2:

Vi skal finne median og typetall blant karakterene 1, 4, 5, 5, 4, 1, 3, 4, 2, 2, 2, 4, 4, 4, 3, 3, 1, 3, 2, 5, 6, 3, 1, 4, 2.

Vi sorterer først karakterene i stigende rekkefølge: 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6.

Vi har 25 elementer, så midtelementet blir element nummer ${\large \frac{1 + 25}{2}} = 13$. Det trettende elementet har verdien 3, så medianen er 3.

4 forekommer flest ganger, så typetallet er 4.

Tilbake til oppgaven

Oppgave 3:

Vi vet at 20, 34, 16, 27, 8 og 9 busspassasjerer gir et gjennomsnitt på 19 passasjerer, og skal beregne standardavviket.

Summen av de kvadratiske avstandene blir

(20 − 19)2 + (34 − 19)2 + (16 − 19)2 + (27 − 19)2 + (8 − 19)2 + (9 − 19)2 = 1 + 225 + 9 + 64 + 121 + 100 = 520.

Det er 6 målinger, så vi skal dividere 520 på 6 − 1 = 5 for å finne variansen. Så tar vi kvadratrota og får $\sqrt {\large \frac{520}{5}} \approx 10{,}20$. Standardavviket til passasjertallet er ca. 10,20 passasjerer.

I et regneark som Excel legger vi inn dataene i hver sin celle, la oss si at det er A1 … A6. Så setter vi markøren i cella der vi vil ha utført beregningen og skriver =stdav.s(A1: A6). Regnearket beregner standardavviket til om lag 10,20.

I GeoGebra kan vi gjøre tilsvarende med funksjonen stavv, vi kan også skrive stavv(20, 34, 16, 27, 8, 9) direkte i inntastingsfeltet.

Tilbake til oppgaven

Oppgave 4:

Vi skal vurdere hvordan det påvirker gjennomsnitt og standardavvik for antall busspassasjerer hvis det på bussen med færrest passasjerer i oppgave 4 er 2 i stedet for 8 passasjerer, og på bussen med flest passasjerer 40 i stedet for 34.

Dette betyr 6 færre passasjerer på én buss, og 6 flere på en annen. Senterpunktet blir da det samme, så gjennomsnittet endrer seg ikke. Vi får

$\overline X = {\large \frac{20 + 40 + 16 + 27 + 2 + 9}{6}} = 19$.

Spredningen øker derimot, så standardavviket øker.

Summen av de kvadratiske avstandene blir

(20 − 19)2 + (40 − 19)2 + (16 − 19)2 + (27 − 19)2 + (8 − 19)2 + (9 − 19)2 = 1 + 441 + 9 + 64 + 289 + 100 = 904.

Og standardavviket blir

$\sqrt {\large \frac{904}{5}} \approx 13{,}45$.

Tilbake til oppgaven

Oppgave 5:

Vi skal finne og tolke variasjonsbredden og kvartilbredden til datasettet 6, 25, 15, 8, 29, 14, 27, 30, 0, 29, 0, 2, 23, 125, 5, 30, 20, 10, 14, som representerer antall minutter et tog er forsinket.

Vi sorterer først dataene i stigende rekkefølge: 0, 0, 2, 5, 6, 8, 10, 14, 14, 15, 20, 23, 25, 27, 29, 29, 30, 30, 125.

Variasjonsbredden er avstanden mellom største og laveste verdi, 125 − 0 = 125.

Datasettet har 19, verdier, så første kvartil blir verdien til element nummer (1 + 19) · 0,25 = 5, altså 6. Tredje kvartil blir verdien til element nummer (1 + 19) · 0,75 = 15, altså 29.

Kvartilbredden blir 29 − 6 = 23.

Basert på kvartilbredden ser vi at forsinkelsene normalt varierer med 23 minutter, mellom 6 og 29 minutter.

Ser vi på variasjonsbredden, er den antakelig ikke representativ på grunn av enkeltverdien 125, som ligger langt over de andre verdiene, og kanskje er forårsaket av en spesiell hendelse. På den annen side ser vi at toget noen ganger faktisk ikke er forsinket. 

Tilbake til oppgaven

Forventning og varians

Oppgave 1:

Vi skal finne forventningen til hvor mange plagg en kunde kjøper i en klesbutikk når 30 % ikke kjøper noen ting, 20 % kjøper ett plagg, 40 % kjøper to plagg og 10 % kjøper 3 plagg.

Vi kaller antall kjøpte plagg for X.

At 30 % ikke kjøper noen ting, kan vi da uttrykke som P(X = 0) = 0,3.

At 20 % kjøper ett plagg, kan vi da uttrykke som P(X = 1) = 0,2.

At 40 % kjøper to plagg, kan vi da uttrykke som P(X = 2) = 0,4.

At 10 % kjøper tre plagg, kan vi da uttrykke som P(X = 3) = 0,1.

Forventningen til antall kjøpte plagg finner vi ved å multiplisere hver variant av antall kjøpte plagg med den tilhørende sannsynligheten, og summere produktene.

Så vi får μ = E(X) = 0 · 0,3 + 1 · 0,2 + 2 · 0,4 + 3 · 0,1 = 1,3.

En vilkårlig kunde kan forventes å kjøpe 1,3 plagg.

Tilbake til oppgaven

Oppgave 2:

Vi skal avgjøre om Farmen-deltakere med lite penger bør satse 2 kroner på et lykkehjul med 16 sektorer, der det er åtte kroners gevinst på 1 sektor, fire kroners gevinst på 6 sektorer, to kroners gevinst på 5 sektorer, og ingen gevinst på 4 sektorer. Vi kan anta at alle sektorene er like store, det vil si at sannsynligheten for at hjulet stopper i en vilkårlig sektor er ${\large \frac{1}{16}}$.

Forventet gevinst finner vi ved å multiplisere gevinsten i hver sektor med sannsynligheten for at hjulet stopper i den sektoren, og addere produktene:

$\mu = E(X) = 8 \cdot {\large \frac{1}{16}} + 4 \cdot {\large \frac{6}{16}} + 2 \cdot {\large \frac{5}{16}} + 0 \cdot {\large \frac{4}{16}} = {\large \frac{42}{16}} = {\large \frac{21}{8}} \approx 2{,}63$.

Forventet gevinst er høyere enn innsatsen på 2 kroner, så det vil i det lange løp lønne seg å spille på lykkehjulet. En annen sak er at sjansen for å tape innsatsen er ${\large \frac{4}{16}} = {\large \frac{1}{4}}$. Så med uflaks i de første rundene og lite penger er det jo en risiko for å bli blakk før en får gevinst.

(Farmen-deltakerne tapte i første runde, men spilte videre, og ga seg med 4 kroner i pluss.)

Tilbake til oppgaven

Oppgave 3:

Vi skal finne forventning, varians og standardavvik til antall varer en kunde kjøper når 20 % ikke kjøper noen ting, 20 % kjøper én vare og 60 % kjøper to varer. Antall kjøpte varer betegnes med X. Vi får 

μ = E(X) = 0 · 0,2 + 1 · 0,2 + 2 · 0,6 = 1,4

E(X2) = 02 · 0,2 + 12 · 0,2 + 22 · 0,6 = 2,6

Var(X) = E(X2) − μ2 = 2,6 − (1,4)2 = 0,64

$\sigma = \sqrt{Var(X)} = \sqrt{0{,}64} = 0{,}8$

Forventningen er 1,4, variansen 0,64 og standardavviket 0,8.

Tilbake til oppgaven

Oppgave 4:

Vi har en terning der antall øyne er multiplisert med 2, med lik sannsynlighet for å få 2, 4, 6, 8, 10 og 12. Vi skal så beregne μ = E(X) og Var(X) og sjekke om dette er i tråd med reglene for forventning og varians til en variabel multiplisert med en konstant.

Vi får:

$\mu = E(X) = (2 + 4 + 6 + 8 + 10 + 12)\cdot {\large \frac{1}{6}} = {\large \frac{42}{6}} = 7$.

Og vi får

$E(X^2) = (2^2 + 4^2 + 6^2 + 8^2 + 10^2 + 12^2)\cdot {\large \frac{1}{6}} = {\large \frac{364}{6}}$.

$Var(X) = E(X^2) − \mu^2 = {\large \frac{364}{6}} − 7^2 \approx 11{,}667$

De tilsvarende verdiene for en vanlig terning er E(X) = 3,5 og Var(X) ≈ 2,917. 

Vi ser at dette er i tråd med reglene om å multiplisere en konstant med en tilfeldig variabel:

E(k · X) = k · E(X) fordi E(2 · X) = 7 = 2 · E(X) = 2 · 3,5.

og

Var(k · X) = k2 · Var(X) fordi Var(2 · X) ≈ 11,667 ≈ 22 · Var(X) ≈ 22 · 2,917.

Tilbake til oppgaven

Sannsynlighetskalkulatoren i GeoGebra

GeoGebra har en egen sannsynlighetskalkulator som vi får fram ved å klikke på «Vis» – «Sannsynlighetskalkulator».

Kalkulatoren har to hovedfaner, «Fordeling» og «Statistikk». Vi ser først på fanen «Fordeling», der vi kan beregne sannsynligheter i forskjellige fordelinger.

Fane «Fordelinger»

Bildet under viser en framstilling av sannsynligheten for antall kron i et kast med 5 mynter.

Illustrasjon av sannsynlighetskalkulatoren i GeoGebra

Forventning og standardavvik angis altså med de greske bokstavene μ og σ.

«Venstresidig» brukes hvis vi skal finne sannsynligheten for at X er mindre eller lik en verdi. «Intervall» brukes hvis vi skal finne sannsynligheten for at X ligger på og mellom to verdier, og «Høyresidig» brukes hvis vi skal finne sannsynligheten for at X er større eller lik en verdi.

De aktuelle verdiene kan vi enten skrive i utfyllingsfeltene nederst, eller sette ved å dra i pilene i underkant av kolonnene.

Binomisk fordeling

Vi skal nå illustrere hvordan vi gjør beregninger i en binomisk modell ved hjelp av sannsynlighetskalkulatoren i GeoGebra.

Eksempel 1:

Vi skal beregne forskjellige sannsynligheter for antall kron ved kast med 7 mynter. Hvis sannsynlighetskalkulatoren ikke er framme, tar vi den fram ved å velge «Vis» – «Sannsynlighetskalkulator», fane «Fordeling».

Vi har en binomisk sannsynlighetsmodell. n = 7 fordi vi gjør 7 kast, og p = 0,5 fordi sannsynligheten for suksess er 0,5. Vi velger «Binomisk fordeling» og setter «n» til 7 og «p» til 0.5. GeoGebra regner ut at fordelingens forventningsverdi er μ = 3,5 og standardavviket σ ≈ 1,3229:

Sannsynlighetskalkulatoren stilt inn for å beregne binomisk sannsynlighet

Så skal vi finne

  1. Sannsynligheten for 3 kron.
    Vi klikker på symbolet for «Intervall» og angir 3 som både øvre og nedre grense. GeoGebra svarer 0,2734.
    Sannsynlighetskalkulatoren stilt inn for intervallsannsynlighet
     
  2. Sannsynligheten for 1 kron eller mindre.
    Vi klikker på symbolet for «Venstresidig» og angir 1 som øvre grense. GeoGebra svarer 0,0625.
    Sannsynlighetskalkulatoren stilt inn for venstresidig sannsynlighet
     
  3. Sannsynligheten for 5 kron eller mer.
    Vi klikker på symbolet for «Høyresidig» og angir 5 som nedre grense. GeoGebra svarer 0,2266.
    Sannsynlighetskalkulatoren stilt inn for høyresdidig intervall

I stedet for å angi X-verdiene ved å skrive inn tall kan vi også dra i pil-symbolene under kolonnene.

Oppgave 1:

La X betegne antall kron i 8 kast med en juksemynt der sannsynligheten for kron er 0,6. Bruk sannsynlighetskalkulatoren i GeoGebra til å beregne

  1. ​Fordelingens forventningsverdi og standardavvik.
     
  2. P(X = 4)
     
  3. P(X ≤ 2)
     
  4. P(X > 6)
    NB! Legg merke til at vi spør etter «større enn 6», ikke «større eller lik 6».

Se løsningsforslag

Hypergeometrisk fordeling

Når vi skal gjøre beregninger i en hypergeometriskmodell ved hjelp av sannsynlighetskalkulatoren i GeoGebra, velger vi naturligvis «Hypergeometrisk fordeling».

Parameterne heter imidlertid noe annet enn det vi kaller dem i artikkelen om hypergeometrisk fordeling. Grunnmengden N heter «populasjon», mengden spesielle elementer, M, heter «n» og antall vi trekker, n, heter «utvalg».

Eksempel 2:

Bildet under viser hva vi fyller ut for å beregne sannsynligheten for å få en hånd med akkurat 2 spar når vi trekker 5 kort fra en full stokk.

Sannsynlighetskalkulatoren stilt inn for å beregne hypergeometrisk sannsynlighet

«Populasjon» er antall kort totalt, altså 52, «n» er antall spar totalt, altså 13 og «utvalg» er antall kort vi trekker, altså 5.
Så angir vi et intervall som både begynner og slutter med 2, og får som svar at sannsynligheten er om lag 0,2743.

Denne beregningen gjør vi med formler i eksempel 1 i artikkelen om hypergeometrisk fordeling.

Oppgave 2:

I en forening med 65 medlemmer er 13 negative til et forslag.

Bruk sannsynlighetskalkulatoren til å finne fordelingens forventning og standardavvik.

Anta at vi velger 20 representanter tilfeldig fra gruppen. Bruk sannsynlighetskalkulatoren til å finne sannsynligheten for at

  1. Ingen av representantene er negative.
     
  2. Én av representantene er negativ.
     
  3. To eller flere av representantene er negative.

Disse beregningene gjør vi for hånd i oppgave 1 i artikkelen om hypergeometrisk fordeling.

Se løsningsforslag

Poissonfordeling

Når vi skal gjøre beregninger i en poissonfordelt modell ved hjelp av sannsynlighetskalkulatoren i GeoGebra, velger vi naturligvis «Poissonfordeling».

Her heter imidlertid ikke hyppigheten λ, men μ. Det er et naturlig valg, siden forventningsverdien i en poissonfordeling er lik λ.

Eksempel 3:

Bildet under viser hva vi fyller ut for å beregne sannsynligheten for 7 trær i et skogsområde når λ = 8, som vi regner ut i eksempel 1 i artikkelen om poissonfordeling.

Sannsynlighetskalkulatoren stilt inn for å beregne poissonsannsynlighet

Vi får som svar at sannsynligheten er om lag 0,1396.

Oppgave 3:

I en vannprøve er det i gjennomsnitt to hoppekreps. Anta at mengden hoppekreps er poissonfordelt, og bruk sannsynlighetskalkulatoren i GeoGebra til å finne sannsynligheten for at en annen, like stor vannprøve inneholder

  1. Ingen hoppekreps.
     
  2. Én hoppekreps.
     
  3. To eller flere hoppekreps.

Disse beregningene gjør vi for hånd i oppgave 1 i artikkelen om poissonfordeling.

Se løsningsforslag

Normalfordeling

Når vi skal gjøre beregninger i en normalfordelt modell ved hjelp av sannsynlighetskalkulatoren i GeoGebra, velger vi naturligvis «Normalfordeling».

Vi må da fylle ut fordelingens forventning, «μ», og standardavvik, «σ».

Eksempel 4:

Bildet under viser hva vi fyller ut for å beregne sannsynligheten for at en person er mellom 170 og 180 cm når forventningen er 177 cm og standardavviket 7 cm. Vi ser at GeoGebra finner verdien 0,5072.
Dette regner vi ut ved hjelp av tabeller i eksempel 3.3 i artikkelen om normalfordelingen. Da får vi 0,5077, som ikke er helt korrekt på grunn av avrundingsfeil i standardiseringen.

Sannsynlighetskalkulatoren stilt inn for å beregne normalfordelt sannsynlighet

Oppgave 4:

På en eksamen er resultatene normalfordelt med en forventning på 14 poeng og et standardavvik på 2 poeng, N(14, 22). For å stå må en oppnå mer enn 12 poeng. Bruk sannsynlighetskalkulatoren i GeoGebra til å beregne hvor stor del av de som tar eksamenen, som kan forventes å ikke stå.

Dette regner vi ut for hånd i oppgave 2 i artikkelen om normalfordelingen.

Se løsningsforslag

Diskret fordeling med normaltilnærming

I en diskret sannsynlighetsfordeling kan vi samtidig vise en tilnærmet normalfordeling ved å klikke på knappen med den røde normalfordelingskurven. Bildet under viser en binomisk fordeling med 20 forsøk og suksess-sannsynlighet 0,6, der den tilhørende normalfordelingen er tegnet inn.

Sannsynlighetskalkulatoren viser både binomisk og normalfordelt sannsynlighet

Fane «Statistikk»

Under fanen «Statistikk» kan vi beregne konfidensintervaller og utføre hypotesetester. Vi åpner sannsynlighetskalkulatoren og klikker på fanen «Statistikk».

Valg av statistikkfunksjon i sannsynlighetskalkulator

Konfidensintervaller for forventningsverdier

Kjent standardavvik

Hvis standardavviket i en populasjon er kjent, bruker vi menyvalget «Z-estimat av et gjennomsnitt» til å beregne konfidensintervaller for forventningsverdier. Så angir vi ønsket konfidensnivå, gjennomsnitt, populasjonsstandardavvik og antall målinger.

GeoGebra beregner grensene i konfidensintervallet.

Eksempel 5:

Vi skal finne et 95 % konfidensintervall for gjennomsnittet i en populasjon med kjent standardavvik lik 0,7. Vi har målt 13 elementer, og funnet et gjennomsnitt på 4,14.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-estimat av et gjennomsnitt», og setter

        • «Konfidensnivå» til 0.95, fordi vi skal ha et 95 %-intervall.
        • «Gjennomsnitt» til 4.14, fordi gjennomsnittet er 0,14.
        • «σ» til 0.7, fordi standardavviket er 0,7.
        • «N» til 13, fordi vi har 13 målinger.

Beregning av 95 % konfidensintervall i sannsynlighetskalkulator, n-fordeling

GeoGebra beregner at konfidensintervallet er om lag [3,7595, 4,5205]. Dette regner vi ut for hånd i eksempel 4 i artikkelen om estimering.

«SF» representerer standardavviket til estimatoren, ${\large \frac{0{,}7}{\sqrt {13}}} \approx 0{,}1941$.

Oppgave 5:

Bruk sannsynlighetskalkulatoren i GeoGebra til å beregne et 99 % konfidensintervall for dagsproduksjonen av støtfangere, basert på at gjennomsnittet målt over seks dager er X = 217 enheter og at produksjonen har standardavvik σ = 5,8.

Se løsningsforslag

Ukjent standardavvik

Hvis standardavviket i en populasjon er ukjent, og vi baserer oss på utvalgsstandardavviket, bruker vi menyvalget «T-estimat av et gjennomsnitt» til å beregne konfidensintervaller for forventningsverdier. Så angir vi ønsket konfidensnivå, gjennomsnitt, utvalgsstandardavvik og antall målinger.

GeoGebra beregner grensene i konfidensintervallet.

Eksempel 6:

Vi skal finne et 95 % konfidensintervall for et gjennomsnitt i en populasjon der vi har målt 13 elementer, og funnet et gjennomsnitt på 4,14 og et utvalgsstandardavvik på 0,71.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «T-estimat av et gjennomsnitt», og setter

        • «Konfidensnivå» til 0.95, fordi vi skal ha et 95 %-intervall.
        • «Gjennomsnitt» til 4.14, fordi gjennomsnittet er 4,14.
        • «s» til 0.7, fordi utvalgsstandardavviket er 0,7.
        • «N» til 13, fordi det er gjort 13 målinger.

Beregning av 95 % konfidensintervall i sannsynlighetskalkulator, t-fordeling

GeoGebra beregner at konfidensintervallet er om lag [3,711, 4,569]. Dette regner vi ut for hånd i eksempel 7 i artikkelen om estimering.

«SF» representerer standardavviket til estimatoren, ${\large \frac{0{,}71}{\sqrt {13}}} \approx 0{,}1969$.

Oppgave 6:

Bruk sannsynlighetskalkulatoren i GeoGebra til å beregne et 90 % konfidensintervall for dagsproduksjonen av støtfangere, basert på at gjennomsnittet målt over seks dager er X = 217 enheter og at utvalgsstandardavviket er beregnet til S = 6.

Se løsningsforslag

Konfidensintervaller for sannsynligheter

For å beregne et konfidensintervall for en sannsynlighet bruker vi menyvalget «Z-estimat av en andel». Så angir vi ønsket konfidensnivå, antall suksesser og antall forsøk totalt.

GeoGebra beregner grensene i konfidensintervallet.

Eksempel 7:

Vi skal finne et 95 % konfidensintervall for sannsynligheten for kron hos en mynt som har gitt kron i 33 av 50 kast.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-estimat av en andel», og setter

        • «Konfidensnivå» til 0.95, fordi vi skal ha et 95 %-intervall.
        • «Treff» til 33 fordi kastene har gitt 33 kron.
        • «N» til 50 fordi det totalt er gjort 50 kast.

Beregning av 95 % konfidensintervall i sannsynlighetskalkulator, binomisk modell

GeoGebra beregner at konfidensintervallet er om lag [0,5287, 0,7913]. Dette regner vi ut for hånd i eksempel 9 i artikkelen om estimering.

«SF» representerer standardavviket til estimatoren, $\sqrt{\large \frac{0{,}66(1 – 0{,}66)}{50}} \approx 0{,}067$.

Oppgave 7:

Bruk sannsynlighetskalkulatoren i GeoGebra til å beregne et 95 % konfidensintervall for sannsynligheten for at en vilkårlig mobillader er defekt, når det blant 2000 stikkprøver ble funnet 35 defekte.

Se løsningsforslag

Hypotesetester

I hypotesetester må vi angi verdi for nullhypotesen, og om testen er venstre- høyre-, eller tosidig, noe som gjøres ved å velge henholdsvis <, > eller ≠ for den alternative hypotesen. I tillegg oppgir vi måledataene våre. GeoGebra beregner da testens Z-verdi, og noe som kalles P-verdi. Hvis P-verdien er mindre enn testens signifikansnivå, forkaster vi nullhypotesen og aksepterer den alternative hypotesen.

Tester for sannsynlighet

En hypotesetest for sannsynlighet gjør vi ved menyvalget «Z-test av en andel».

Så angir vi verdien til p i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test, antall suksesser og antall forsøk totalt.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 8:

Vi skal gjøre en hypotesetest på 5 % signifikansnivå på om en mynt som gir 524 kron i 1000 kast har større sannsynlighet enn 0,5 for å få kron.

Den alternative hypotesen blir HA: p > 0,5, og nullhypotesen H0: p = 0,5.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-test av en andel», og setter

        • «Nullhypotese p =» til 0.5 fordi nullhypotesen er at mynten er rettferdig, med en sannsynlighet for kron på 0,5.
        • «Alternativ hypotese» til «>» fordi den alternative hypotesen er at mynten gir for mange kron.
        • «Treff» til 524 fordi kastene har gitt 524 kron.
        • «N» til 1000 fordi det er gjort totalt 1000 kast.

Hypotesetest i binomisk modell

GeoGebra regner ut at verdien til testobservatoren blir om lag Z ≈ 1,5179. Dette regner vi ut for hånd i eksempel 2 i artikkelen om hypotesetesting. Siden Z ≈ 1,5179 < zα = z0,05 ≈ 1,6449, kan vi konkludere med at vi ikke kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,0645. Siden P-verdien ikke er mindre enn signifikansnivået på 0,05, kan ikke nullhypotesen forkastes.

Oppgave 8:

Bruk sannsynlighetskalkulatoren i GeoGebra til å gjøre en hypotesetest på 5 % signifikansnivå på om henholdsvis 20 av 100 og 200 av 1000 seksere ved terningkast tyder på at terningen gir for mange seksere.

Se løsningsforslag

Tester for forventningsverdier

Kjent standardavvik

En hypotesetest for forventningsverdi når standardavviket er kjent, gjør vi ved menyvalget «Z-test av et gjennomsnitt». Så angir vi verdien til μ i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test, gjennomsnitt, standardavvik og antall målinger.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 9:

Vi skal gjøre en hypotesetest på 1 % signifikansnivå på om en maskin som i snitt skal gi ut 10 ml. olje med et standardavvik på 0,65, gir ut for mye olje, når gjennomsnittsmengden i 20 målinger i snitt er 10,5 ml.

Den alternative hypotesen blir HA: μ > 10, og nullhypotesen H0: μ = 10.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-test av en andel», og setter

        • «Nullhypotese μ =» til 10 fordi dette er det forventede volumet olje.
        • «Alternativ hypotese» til «>» fordi den alternative hypotesen er at maskinen gir ut for mye olje.
        • «Gjennomsnitt» til 10.5 fordi gjennomsnittsvolumet er 10,5.
        • «σ» til 0.65 fordi standardavviket er 0,65.
        • «N» til 20 fordi det er gjort 20 målinger.

Hypotesetest i målemodell, standardavvik kjent

GeoGebra regner ut at verdien til testobservatoren blir om lag Z ≈ 3,4401. Dette regner vi ut for hånd i eksempel 3 i artikkelen om hypotesetesting. Siden Z ≈ 3,4401 > zα = z0,01 ≈ 2,3263, kan vi konkludere med at vi kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,0003. Siden P-verdien er mindre enn signifikansnivået på 0,01, kan nullhypotesen forkastes.

Ukjent standardavvik

En hypotesetest for forventningsverdi når standardavviket er kjent, gjør vi ved menyvalget «T-test av et gjennomsnitt». Så angir vi verdien til μ i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test, gjennomsnitt, utvalgsstandardavvik og antall målinger.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 10:

Vi skal gjøre en hypotesetest på 5 % signifikansnivå på om en maskin som i snitt skal gi ut 425 gram bønner gir ut feil mengde, når gjennomsnittsmengden i 20 målinger i snitt er 427,5 gram. Utvalgsstandardavviket er 5 gram.

Den alternative hypotesen blir HA: μ > 425, og nullhypotesen H0: μ = 425.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «T-test av en andel», og setter

        • «Nullhypotese μ =» til 425 fordi dette er den forventede mengden bønner.
        • «Alternativ hypotese» til «≠» fordi den alternative hypotesen er at maskinen gir enten for stor eller for liten mengde bønner.
        • «Gjennomsnitt» til 427.5 fordi gjennomsnittsmengden er 427,5.
        • «s» til 5 fordi utvalgsstandardavviket er 5.
        • «N» til 20 fordi det er gjort 20 målinger.

Hypotesetest i målemodell, basert på utvalgsstandardavvik

GeoGebra regner ut at verdien til testobservatoren blir om lag t ≈ 2,2361. Siden t ≈ 2,2361 > tα/2 (v) = t0,025 (20−1) ≈ 2,0930, kan vi konkludere med at vi kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,0375. Siden P-verdien er mindre enn signifikansnivået på 0,05, kan nullhypotesen forkastes.

Oppgave 9:

Bruk sannsynlighetskalkulatoren i GeoGebra til å gjøre en hypotesetest på 5 % signifikansnivå på om angitt gjennomsnittlig ventetid på 30 sekunder på en telefontjeneste er satt for lavt når 15 oppringninger gir en gjennomsnittlig ventetid på 37 sekunder, med et standardavvik på 14.

Se løsningsforslag

Hypotesetester for to utvalg

I tester for to utvalg tester vi hypoteser om forskjeller i to utvalg, enten forventningsverdier eller sannsynligheter. I tillegg til nullhypotese og alternativ hypotese må vi da angi verdier for to utvalg. GeoGebra kaller disse «Utvalg» og «Utvalg 2». (Det første utvalget skulle nok hett «Utvalg 1», men 1-tallet mangler. I resultatene heter det «Utvalg 1», og på engelsk «Sample 1».)

Tester for forventningsverdier

Kjent standardavvik

En hypotesetest for forskjellen på forventningsverdi i to utvalg når standardavviket i begge utvalg er kjent, gjør vi ved menyvalget «Z-test. Forskjell mellom gjennomsnitt». Så angir vi differansen μ1μ2 i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test. For hvert av de to utvalgene angir vi så gjennomsnitt, standardavvik og antall målinger.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 11:

Vi skal gjøre en hypotesetest på 5 % signifikansnivå på om det er forskjell på mengden sukker to maskiner tilsetter en matvare. Maskin X opererer med et standardavvik på 0,11, og 70 stikkprøver viser at den i snitt tilsetter 10,103 gram sukker. Maskin Y opererer med et standardavvik på 0,13, og 85 stikkprøver viser at den i snitt tilsetter 10,069 gram sukker.

Den alternative hypotesen blir HA: μ1μ2, og nullhypotesen H0: μ1μ2.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-test mellom gjennomsnitt», og setter

        • «Nullhypotese μ1 − μ2» til 0 fordi nullhypotesen er at forventningsverdiene i de to utvalgene er like.
        • «Alternativ hypotese» til «≠» fordi den alternative hypotesen er at forventningsverdiene i de to utvalgene ikke er like.

Vi lar «Utvalg» representere maskin X og setter

        • «Gjennomsnitt» til 10.103 fordi gjennomsnittsmengden for maskin X er 10,103.
        • «σ» til 0.11 fordi maskin X opererer med et standardavvik på 0,11.
        • «N» til 70 fordi det er gjort 70 målinger på maskin X.

Vi lar «Utvalg 2» representere maskin Y og setter

        • «Gjennomsnitt» til 10.069 fordi gjennomsnittsmengden for maskin Y er 10,069.
        • «σ» til 0.13 fordi maskin Y opererer med et standardavvik på 0,13.
        • «N» til 85 fordi det er gjort 85 målinger på maskin Y.

Hypotesetest mellom to utvalg i målemodell, standardavvik kjent

GeoGebra regner ut at verdien til testobservatoren blir om lag Z ≈ 1,7636. Dette regner vi ut for hånd i eksempel 1 i artikkelen om å sammenlikne datasett. Siden Z ≈ 1,7636 < zα/2 = z0,025 ≈ 1,9600, kan vi konkludere med at vi ikke kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,0778. Siden P-verdien ikke er mindre enn signifikansnivået på 0,05, kan ikke nullhypotesen forkastes.

Oppgave 10:

Bruk sannsynlighetskalkulatoren i GeoGebra til å gjøre samme test som i eksempel 11, men basert på at 60 stikkprøver av maskin X gir et snitt på 10,107 gram sukker, og 75 stikkprøver av maskin Y gir et snitt på 10,061 gram sukker. Standardavvikene kan forutsettes å være de samme, 0,11 gram for maskin X og 0,13 gram for maskin Y.

Se løsningsforslag

Ukjent standardavvik

En hypotesetest for forskjellen på forventningsverdi i to utvalg når standardavvikene er ukjent, gjør vi ved menyvalget «T-test, Differanse mellom gjennomsnitt». (Det er litt inkonsekvent at GeoGebra i dette menyvalget bruker ordet «differanse», men ordet «forskjell» i tilsvarende Z-test. På engelsk brukes ordet «difference» i begge tilfeller.) Så angir vi differansen μ1μ2 i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test. For hvert av de to utvalgene angir vi gjennomsnitt, utvalgsstandardavvik og antall målinger.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 12:

Vi skal gjøre en hypotesetest på 5 % signifikansnivå på om det er forskjell på frukthøsten fra to trær, av type X og Y når 13 trær av type X i gjennomsnitt gir 45,154 kg med et utvalgsstandardavvik på 7,998 og 12 trær av type Y i gjennomsnitt gir 42,250 kg med et utvalgsstandardavvik på 8,740.

Den alternative hypotesen blir HA: μ1μ2, og nullhypotesen H0: μ1μ2.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «T-test, Differanse mellom gjennomsnitt», og setter

        • «Nullhypotese μ1 − μ2» til 0 fordi nullhypotesen er at forventningsverdiene i de to utvalgene er like.
        • «Alternativ hypotese» til «≠» fordi den alternative hypotesen er at forventningsverdiene i de to utvalgene ikke er like.

Vi lar «Utvalg» representere type X og setter

        • «Gjennomsnitt» til 45.154 fordi gjennomsnittshøsten for trær av type X er 45,154.
        • «s» til 7.998 fordi trær av type X har et utvalgsstandardavvik på 7,998.
        • «N» til 13 fordi det er gjort 13 målinger på trær av type X.

Vi lar «Utvalg 2» representere type Y og setter

        • «Gjennomsnitt» til 42.25 fordi gjennomsnittshøsten for trær av type Y er 42,25.
        • «s» til 8.74 fordi trær av type Y har et utvalgsstandardavvik på 8,74.
        • «N» til 12 fordi det er gjort 12 målinger på trær av type Y.

Hypotesetest mellom to utvalg i målemodell, standardavvik ukjent

GeoGebra regner ut at verdien til testobservatoren blir om lag t ≈ 0,8644. Dette regner vi ut for hånd i oppgave 2 i artikkelen om å sammenlikne datasett. Siden t ≈ 0,8644 < tα/2 (v) = t0,025 (13+12−2) ≈ 2,0687, kan vi konkludere med at vi ikke kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,3965. Siden P-verdien ikke er mindre enn signifikansnivået på 0,05, kan ikke nullhypotesen forkastes.

Tester for sannsynlighet

En hypotesetest for forskjellen på sannsynlighet i to utvalg gjør vi ved menyvalget «Z-test. Forskjell mellom andeler». Så angir vi differansen p1p2 i nullhypotesen, «<«, «>» eller «≠» for henholdsvis venstresidig, høyresidig eller tosidig test. For hvert av de to utvalgene angir vi antall suksesser og antall forsøk totalt.

GeoGebra beregner Z-verdi og P-verdi.

Eksempel 13:

Vi skal gjøre en hypotesetest på 5 % signifikansnivå på om det er forskjell mellom antallet defekte PC-skjermer ved to forskjellige anlegg, når det på anlegg X ble målt at 17 av 200 var defekte, og på anlegg Y at 31 av 200 var defekte.

Den alternative hypotesen blir HA: p1 = p2, og nullhypotesen H0: p1 ≠ p2.

Vi åpner sannsynlighetskalkulatoren, klikker på fanen “Statistikk”, velger «Z-test. Forskjell mellom andeler», og setter

        • «Nullhypotese p1 − p2» til 0 fordi nullhypotesen er at andelene defekte i de to utvalgene er like.
        • «Alternativ hypotese» til «≠» fordi den alternative hypotesen er at andelene defekte i de to utvalgene ikke er like.

Vi lar «Utvalg» representere anlegg X og setter

        • «Treff» til 17 fordi antall defekte i anlegg X er 17.
        • «N» til 200 fordi det er undersøkt 200 skjermer i anlegg X.

Vi lar «Utvalg 2» representere anlegg Y og setter

        • «Treff» til 31 fordi antall defekte i anlegg Y er 31.
        • «N» til 200 fordi det er undersøkt 200 skjermer i anlegg Y.

Hypotesetest mellom to utvalg i binomisk modell

GeoGebra regner ut at verdien til testobservatoren blir om lag Z ≈ −2,1541. Dette regner vi ut for hånd i eksempel 4 i artikkelen om å sammenlikne datasett. Siden |Z| ≈ 2,1541 > zα/2 = z0,025 ≈ 1,9600, kan vi konkludere med at vi kan forkaste nullhypotesen. Men det er enklere å basere seg på P-verdien, som er om lag 0,0312. Siden P-verdien er mindre enn signifikansnivået på 0,05, kan nullhypotesen forkastes.

Oppgave 11:

Bruk sannsynlighetskalkulatoren i GeoGebra til å gjøre en hypotesetest på 5 % signifikansnivå på om det er forskjell på antall defekte sømmer på bukser produsert ved to produksjonslinjer når det ved produksjonslinje X er 147 av 2500 defekter, og ved produksjonslinje Y er 151 av 2000 defekter.

Se løsningsforslag

Kilder

    • Ubøe, J. (2011). Statistikk for økonomifag. Gyldendal akademisk
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk

Statistikk med GeoGebra

Søylediagram og histogram

For å kunne lage diagrammer på en effektiv måte i GeoGebra, må vi ta i bruk GeoGebras regneark. Hvis regnearket ikke allerede er framme, klikker vi på «Vis» – «Regneark».

Hvordan få fram regnearket i GeoGebra

Vil vi ha regnearket bort igjen, klikker vi på «Vis» – «Regneark» en gang til.

Blir det trangt om plassen, kan vi godt skjule algebrafeltet, det er ikke så interessant når vi skal lage diagrammer. Hvis algebrafeltet er framme, vil det forsvinne hvis vi klikker på «Vis» – «Algebrafelt».

Regnearket i GeoGebra fungerer på samme måte som andre regneark, for eksempel Excel, men har mindre funksjonalitet.

Arbeidsgangen ved å lage diagrammer er å først skrive dataene i regnearket og så skrive en kommando som refererer til dataene i inntastingsfeltet. Referanse til data gjøres gjennom å oppgi navnene på cellene der dataene befinner seg. Dette navnet består av kolonnenavnet satt sammen med radnummeret, for eksempel A1, for cella øverst til venstre.
NB! Kolonnenavn må angis med store bokstaver.

Kommandoen for å lage søylediagrammer er søylediagram, og kommandoen for å lage histogrammer er histogram.

Søylediagram kan vi lage på flere måter. Én måte er å skrive inn alle verdiene i et område i regnearket, og i søylediagram-kommandoen angi navnet på cella øverst til venstre og cella nederst til høyre i dataområdet, atskilt med kolon. Vi må også angi ønsket søylebredde. 

Eksempel 1:

Vi skal lage et søylediagram som presenterer dataene fra eksempel 1 i artikkelen om måltall i statistikk, 140, 141, 137, 143, 145, 142, 139, 138, 139, 141, 144, 137, 138, 142, 140, 142, 140, 138, 135, 142, 144, 141, 148, 140, 149, 135, 141, 140, 139 og 137.

Vi skriver da inn verdiene i regnearket:

Regneark med dataliste i GeoGebra

Øvre, venstre celle i dataområdet er A1 og nedre, høyre D8. Det spiller ingen rolle at det er tomme celler i området, de blir ignorert av GeoGebra.

I inntastingsfeltet skriver vi søylediagram(A1:D8, 0.5), der 0.5 betyr at hver søyle skal ha en bredde på 0,5. GeoGebra lager et søylediagram i grafikkfeltet:

Søylediagram i GeoGebra

Det kan være vi må justere litt på aksene før vi ser diagrammet. Vi kan så endre farge, linjetykkelse, m.m. ved å høyreklikke på en av søylene og velge «Egenskaper».

Har vi algebrafeltet framme, ser vi at GeoGebra der presenterer tallet 15. Det virker jo litt underlig, siden vi har 30 celler med data. Men dette tallet angir ikke mengden data, men det totale arealet av søylene. Og siden søylebredden er 0,5 blir det totale arealet 30 · 0,5 = 15.

I stedet for å skrive inn hver forekomst av en verdi, kan vi angi hver verdi, og hvor mange ganger den forekommer. Vi angir da de forskjellige verdiene i én kolonne, antall forekomster i en annen. I søylediagram-kommandoen angir vi så første og siste celle i hver av kolonnene, i stedet for å angi alt som ett dataområde. 

Eksempel 2:

Vi skal lage et søylediagram som presenterer samme data som eksempel 1, men nå baserer vi oss på frekvenstabellen i eksempel 2 i artikkelen om måltall i statistikk, der vi har talt opp hvor mange ganger hver høyde forekommer, 135:2, 136:0, 137:3, 138:3, 139:3, 140:5, 141:4, 142:4, 143:1, 144:2, 145:1, 146:0, 147:0, 148:1, 149:1.

Vi skriver inn verdiene i regnearket:

Regneark med frekvensdata i GeoGebra

Her er høydene listet opp mellom celle A1 og A12 og antall forekomster mellom celle B1 og B12. I inntastingsfeltet skriver vi søylediagram(A1:A12, B1:B12, 0.5). 0,5 er som før søylebredden, som vi kan sette til hva vi vil.

GeoGebra tegner opp samme søylediagram som i eksempel 1.

Oppgave 1:

Bruk GeoGebra til å lage et søylediagram som viser fordeling av karakterene fra oppgave 1 i artikkelen om måltall i statistikk, altså 1, 4, 5, 5, 4, 1, 3, 4, 2, 2, 2, 4, 4, 4, 3, 3, 1, 3, 2, 5, 6, 3, 1, 4, 2.
Søylebredden skal være 0,75.
Bruk både metoden fra eksempel 1 og fra eksempel 2.

Se løsningsforslag

For å lage histogrammer, må vi angi intervallgrensene samt høyden av hver søyle. Vi forklarer dette greiest gjennom et eksempel:

Eksempel 3:

Vi skal lage et histogram som viser fire intervaller med bredder på henholdsvis 5, 5, 10 og 20. Det er 5 målinger i hvert intervall:

 Intervall  [0, 5⟩ [5,10⟩ [10,20⟩ [20,40⟩
 Frekvens  5 5 5

Vi starter med å fylle ut intervall og frekvens, slik det står i tabellen over:

Regneark med grunnlagsdata for histogram i GeoGebra

Overskriftene er kosmetiske, de har ingen betydning for beregningene, og er der bare for å hjelpe oss å huske hva som er hva.

Vi har her angitt starten på hvert intervall i kolonne A, i tillegg til slutten på siste intervall. I kolonne B har vi skrevet inn frekvensen, altså antall forekomster i hvert intervall. Men vi trenger også høyden på hver søyle, og den er det enklest å la regnearket beregne selv. Vi starter med å lage en hjelpekolonne som inneholder bredden på hver søyle. Denne bredden er jo lik avstanden mellom starten på ett intervall og starten på neste. For å beregne bredden på første søyle, tar vi altså innholdet i celle A3 og trekker fra innholdet i celle A2. Dette kan vi gjøre direkte i regnearket ved å skrive = A3 – A2. Husk å skrive likhetstegnet!

Regneark med beregning av søylebredde i histogram i GeoGebra

I cella under skal det stå = A4 – A3, og så videre nedover. Men vi trenger ikke skrive inn dette selv. Hvis vi tar tak i nedre, høyre hjørne i celle C2 og drar nedover, fyller regnearket ut formlene selv.

Regneark med demonstrasjon av å dra ut formel i GeoGebra

Søylehøyden beregner vi så ved å dividere frekvensen på bredden. I celle D2 skriver vi = B2 / C2, og trykker <enter>. Så tar vi tak i nedre, høyre hjørne i cella og drar nedover. Resultatet blir slik:

Regneark med ferdig beregnede data til histogram i GeoGebra

Så gjenstår det bare å opprette selve histogrammet. Vi skriver histogram(A2:A6, D2:D5) i inntastingsfeltet. Her angir altså A2:A6 celleområdet med intervallgrenser, D2:D5 celleområdet med søylehøyder. GeoGebra lager et histogram som vist under, når vi har justert aksene litt.

Ferdig histogram laget med GeoGebra

Oppgave 2:

Bruk GeoGebra til å lage et histogram som viser fordeling av karakterene fra oppgave 1, med intervaller 1-2, 3, 4 og 5-6.

Her kan det være lurt å sentrere søylene om karakterene, slik at intervallene blir 0,5-2,5, 2,5-3,5, 3,5-4,5 og 4,5-6,5.

Se løsningsforslag

Boksplott

Et boksplott kan være en god måte å illustrere spredningen i et datasett på. Boksplottet under illustrerer for eksempel dataene fra eksempel 7 i artikkelen om måltall i statistikk, 13, 14, 17, 18, 18, 21, 23, 23, 27, 30 og 32. Her er laveste verdi 13, første kvartil 17, median 21, tredje kvartil 27 og høyeste verdi 32.

Boksplott laget med GeoGebra

Vi ser at de ytterste, vertikale strekene markerer laveste og høyeste verdi i datasettet, begynnelsen og slutten på boksen markerer første og tredje kvartil, og den vertikale streken inni boksen markerer medianen.

For å lage et boksplott bruker vi kommandoen boksplott. Skriver vi boksplott(1, 0.5, 13, 17, 21, 27, 32), tegner GeoGebra boksplottet vist over. Tallene 1 og 0,5 som står først, betyr at boksplottet skal sentreres rundt y=1 med avstand 0,5 fra senter til ytterlinje. Deretter følger laveste verdi, første kvartil, median, tredje kvartil og høyeste verdi.

Bredden måles altså fra senter til ytterlinje, slik at boksens totale bredde blir 1.

Eksempel 4:

Vi skal lage et boksplott sentrert rundt y=2 med total bredde 0,8, laveste verdi 1, første kvartil 3, median 4, tredje kvartil 6 og høyeste verdi 7. Vi skriver boksplott(2, 0.4, 1, 3, 4, 6, 7) i inntastingsfeltet. GeoGebra lager boksplottet under:

Boksplott laget med GeoGebra

Det er også mulig å lage et boksplott basert på settet med rådata. I stedet for å skrive laveste verdi, første kvartil, median, tredje kvartil og høyeste verdi, lister vi da opp rådataene mellom krøllparenteser, for eksempel boksplott(1, 0.5, {13, 14, 17, 18, 18, 21, 23, 23, 27, 30, 32}). Alternativt kan dataene legges inn i regneark-delen i GeoGebra. I stedet for å liste opp dataene, referer vi da til aktuelt celleområde, for eksempel, boksplott(1, 0.5, A1:A11), hvis dataene ligger i kolonne A, fra rad 1 til 11. 

Oppgave 3:

Lag et boksplott av dataene fra oppgave 5 i artikkelen om måltall i statistikk, 6, 25, 15, 8, 29, 14, 27, 30, 0, 29, 0, 2, 23, 125, 5, 30, 20, 10, 14. Plottet skal være sentrert rundt y=1 og ha total bredde 1. 

  1. Basert på rådataene.
     
  2. Basert på at laveste verdi er 0, første kvartil 6, median 15, tredje kvartil 29 og største verdi 125.

Se løsningsforslag

Kilder

    • Ubøe, J. (2011). Statistikk for økonomifag. Gyldendal akademisk
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk

Sammenlikne datasett

l artikkelen om hypotesetesting lærer vi å lage hypotesetester om avvik i forventede verdier eller binomiske sannsynligheter i et datasett. I denne artikkelen skal vi lage hypotesetester om forskjeller mellom to datasett. Det kan for eksempel være at en ønsker å teste om en ny medisin gir økt virkning, eller om en ny type gjødsel gir økt avling.

Sammenlikne forventning

artikkelen om hypotesetesting baserer vi oss på testobservatoren

$Z = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{\sigma}{\sqrt n}}$

som kan skrives som

$Z = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \sqrt \frac{\sigma^2}{n}}$

Her er X målt gjennomsnitt, μ0 forventet gjennomsnitt, σ fordelingens standardavvik, og n antall målinger.

Nå skal vi se på to datasett, som vi kaller X og Y. Vi vil da ha to gjennomsnitt, X og Y, to standardavvik, σX og σY, og to tall på antall målinger, nX og nY. I stedet for å bruke gjennomsnittets avvik fra forventet verdi, X − μ0, skal vi bruke forskjellen på gjennomsnittene, XY.

Testobservatoren blir

$\fbox{$Z = \frac{\displaystyle \overline X − \overline Y}{\displaystyle \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$}$

Vi skiller på ensidige og tosidige tester. I en ensidig test er den alternative hypotesen at forventningen i det ene settet skiller seg fra forventningen i det andre, HA: μXμY. I en tosidig test er den alternative hypotesen at forventningen i det ene settet er mindre eller større enn forventningen i det andre, HA: μXμY eller HA: μX > μY. I en ensidig test forkaster vi nullhypotesen hvis |Z| > zα, i en tosidig test forkaster vi nullhypotesen hvis |Z| > zα/2.

Eksempel 1:

To maskiner tilsetter sukker i en matvare. Maskin X er oppgitt å ha et standardavvik på 0,11, maskin Y er oppgitt å ha et standardavvik på 0,13. En bedrift ønsker å gjøre en hypotesetest på 5 % signifikansnivå på om de to maskinene tilsetter forskjellig mengde sukker. 70 prøver av maskin X gir et snitt på 10,103 gram, 85 prøver av maskin Y et snitt på 10,069 gram.

Vi har altså X = 10,103, Y = 10,069, σX = 0,11, σY = 0,13, nX = 70, nY = 80.

Hypotesene blir HA: μXμY , H0: μXμY .

Testobservatoren blir

$Z = \frac{\displaystyle 10{,}103 − 10{,}069}{\displaystyle \sqrt{\frac{(0{,}11)^2}{70} + \frac{(0{,}13)^2}{85}}} \approx 1{,}7636$

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |Z| > zα/2

Med 5 % signifikansnivå blir α/2 = 0,05/2 = 0,025.

Vi slår opp i (kvantil)normalfordelingstabellen med α = 0,025, der det står 1,9600. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,025) i Excel eller inversnormalfordeling(0, 1, 1 – 0.025) i GeoGebra.

Siden |Z| ≈ 1,764 $\ngtr$ zα/2 ≈ 1,9600, kan vi ikke forkaste vi nullhypotesen. Undersøkelsen indikerer ikke at det er forskjell på sukkermengdene.

Oppgave 1:

Etter en tid gjør bedriften nye målinger med maskinene i eksempel 1. 60 prøver av maskin X gir et snitt på 10,107 gram sukker, 75 prøver av maskin Y et snitt på 10,061 gram sukker.

Standardavvikene kan forutsettes å være de samme, 0,11 gram for maskin X og 0,13 gram for maskin Y.

Sett opp hypoteser og gjennomfør en hypotesetest på 5 % signifikansnivå på om de to maskinene nå tilsetter forskjellig mengde sukker.

Se løsningsforslag

Ukjent standardavvik

Vi arbeider i dette avsnittet med noen eksempler som for oversiktens skyld baseres på svært få målinger. Vi forutsetter da at populasjonene er normalfordelte. 

I artikkelen om estimering og artikkelen om hypotesetesting sier vi at vi ofte ikke kjenner fordelingers standardavvik nøyaktig. Da baserer vi oss på utvalgsstandardavviket, med testobservator

$T = \frac{\displaystyle \overline X − \mu_0}{\displaystyle \frac{S}{\sqrt n}}$

I stedet for å slå opp verdier i normalfordelingstabellen slår vi opp i t-fordelingstabellen.

For å tilpasse observatoren til to grupper, må vi altså erstatte Xμ0 med XY. Men observatoren må også tilpasses to utvalgsstandardavvik.

Det gjør vi ved å erstatte $\frac{\displaystyle S}{\displaystyle \sqrt n}$ med $S_P \sqrt{\frac{\displaystyle 1}{\displaystyle n_X} + \frac{\displaystyle 1}{\displaystyle n_Y}}$, der SP er et felles standardavvik beregnet for de to utvalgene. P-en står for «pooled», «samlet» på norsk.

I artikkelen om måltall i statistikk ser vi at vi beregner utvalgsstandardavviket i et enkelt utvalg som

$S = \sqrt \frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)^2}{\displaystyle n − 1}$

SP beregnes etter tilsvarende mønster:

$\fbox{$S_P = \sqrt \frac{\displaystyle \sum_{i = 1}^{n^{\phantom 1}_X}(X_i − \overline X)^2 + \sum_{i = 1}^{n^{\phantom 1}_Y}(Y_i − \overline Y)^2 \;}{\displaystyle n_X + n_Y − 2}$}$

Vi ser at det krever mye regnearbeid å beregne SP for hånd. Siden kalkulatorer ofte har funksjoner for å finne standardavviket i et enkelt datasett, skal vi skrive det om litt, slik at vi finner SP uttrykt ved standardavviket til hvert av datasettene, Sx og Sy.

Vi tar utgangspunkt i den generelle formelen for utvalgsstandardavvik:

$S = \sqrt \frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)^2}{\displaystyle n − 1} $

Så multipliserer vi med $\sqrt{n − 1}$ på begge sider av likhetstegnet:

$S \sqrt{n − 1} = \sqrt{\displaystyle \sum_{i = 1}^n(X_i − \overline X)^2}$

Så kvadrerer vi på begge sider av likhetstegnet:

$S^2 (n − 1) = \displaystyle \sum_{i = 1}^n(X_i − \overline X)^2$

Det betyr at vi i formelen for SP kan sette inn ${S_X}^2(n_X − 1)$ i stedet for $\displaystyle \sum_{i = 1}^{n^{\phantom 1}_X}(X_i − \overline X)^2$ og ${S_Y}^2(n_Y− 1)$ i stedet for $\displaystyle \sum_{i = 1}^{n^{\phantom 1}_Y}(Y_i − \overline Y)^2$

$\fbox{$S_P = \sqrt \frac{\displaystyle {S_X}^2(n^{\phantom 1}_X − 1) + {S_Y}^2(n^{\phantom 1}_Y − 1)}{\displaystyle n^{\phantom 1}_X + n^{\phantom 1}_Y − 2}$}$

På denne formen er utregningene mye enklere hvis vi har verktøy til å finne SX og SY.

Og observatoren er altså

$\fbox{$T = \frac{\displaystyle \overline X − \overline Y}{\displaystyle S_P \sqrt{\frac{1}{n^{\phantom 1}_X} + \frac{1}{n^{\phantom 1}_Y}}}$}$

artikkelen om hypotesetesting og artikkelen om estimering lærer vi at når vi skal slå opp i en t-fordelingstabell, må vi kjenne antall frihetsgrader, v, som vi setter lik antall observasjoner minus 1, v = n − 1. Nå har vi to sett med observasjoner, og får v = (nX − 1) + (nY − 1) = nX + ny − 2.

I en ensidig test forkaster vi nullhypotesen hvis |T| > zα (v), i en tosidig test forkaster vi nullhypotesen hvis |T| > zα/2 (v).

Eksempel 2:

Et oljeselskap ønsker å teste ut om en ny type tilsetningsstoff i bensin gir redusert forbruk i praksis, og gjør et forsøk med 5 biler. Uten tilsetningsstoff brukere bilene henholdsvis 4,7, 3,5, 3,3, 4,2 og 3,6 liter per 100 kilometer. Med tilsetningsstoff bruker bilene henholdsvis 4,2, 3,2, 3,0, 3,9 og 3,3 liter per 100 kilometer. Vi kaller observasjonene uten tilsetning for X, og observasjonene med tilsetning for Y.

Så skal vi på 5 % signifikansnivå utføre en hypotesetest på om tilsetningsstoffet gir redusert forbruk.

Hypotesene blir HA: μXμY , H0: μX ≤ μY .

Vi har altså nX = nY = 5.

Fra kalkulator eller PC får vi:

X = 3,86

Y = 3,52

SX ≈ 0,5771

SY ≈ 0,5070

Vi beregner:

$S_p \approx \sqrt \frac{\displaystyle {0{,}5771}^2(5 − 1) + {0{,}5070}^2(5 − 1)}{\displaystyle 5 + 5 − 2} \approx 0{,}5432$

$T \approx \frac{\displaystyle 3{,}86 − 3{,}52}{\displaystyle 0{,}5432 \sqrt{\frac{1}{5} + \frac{1}{5}}} \approx 0{,}9897$

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |T| > tα (v)

Med 5 % signifikansnivå blir α = 0,05.

Vi slår opp i (kvantil)t-fordelingstabellen med α = 0,05 og v = 5 + 5 − 2 = 8 der det står 1,860. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,05; 8) i Excel eller inverstfordeling(8, 1 – 0.05) i GeoGebra.

Siden T ≈ 0,9897 $\ngtr$ tα (v) ≈ 1,860, kan vi ikke forkaste nullhypotesen. Testen gir ikke grunnlag for å si at tilsetningsstoffet gir redusert bensinforbruk.

Men som vi skal se i eksempel 3, har vi gjennomført denne testen på en klønete måte.

Oppgave 2:

En fruktbonde har to forskjellige typer kirsebærtrær, og vil undersøke om de gir forskjellig mengde frukt. Han veier frukthøsten fra 13 trær av type X og 12 trær av type Y, og får:

 Type X 44 44 56 46 47 38 58 53 49 35 46 30 41 
 Type Y 35 47 55 29 40 39 32 41 42 57 51 39   

Sett opp og gjennomfør en hypotesetest på 5 % signifikansnivå på om de to typene trær gir forskjellig mengde frukt.

Se løsningsforslag

Paret test

Hvis vi ser nøyere på dataene i eksempel 2, ser vi at konklusjonen om at tilsetningsstoffet ikke gir lavere forbruk virker underlig. For hver bil har faktisk en markant nedgang i forbruk. Problemet ligger i måten vi beregner det sammenslåtte standardavviket på. Vi undersøker hvor stort avviket fra gjennomsnittet er i hver av de to gruppene, men dette er egentlig helt uinteressant. Det vi burde sett på, var hvor mye hver bils endring i forbruk, XiYi avviker fra gjennomsnittsendringen, XY.

Vi bør altså heller beregne SP som

$\fbox{$S_P = \sqrt \frac{\displaystyle \sum_{i = 1}^{n}\big(X_i − Y_i − (\overline X − \overline Y)\big)^2}{\displaystyle n − 1}$}$

Vi opererer her ikke lenger med nX + nY enkeltmålinger, men med n = nX = nY par. (nX må være lik nY, ellers ville vi jo ikke kunne danne par.)

Igjen gir formen på SP en del regnearbeid, men nå gjør vi et triks, og lager et nytt datasett, D som består av differansen i hvert par.

$\fbox{$D_i = X_i − Y_i, \; i \in [1, n] $}$

Testobservatoren blir da:

$\fbox{$T = \frac{\displaystyle \overline D}{\displaystyle S_D \frac{1}{\sqrt n}}$}$

Eksempel 3:

Vi skal gjøre om igjen undersøkelsen fra eksempel 2, men denne gangen som en paret test.

Hypotesene blir som før HA: μXμY , H0: μX ≤ μY .

Vi beregner:

D1 = 4,7 − 4,2 = 0,5
D2 = 3,5 − 3,2 = 0,3
D3 = 3,3 − 3,0 = 0,3
D4 = 4,2 − 3,9 = 0,3
D5 = 3,6 − 3,3 = 0,3

Fra kalkulator eller PC får vi:

D = 0,34

SD ≈ 0,0894

Vi beregner:

$T \approx \frac{\displaystyle 0{,}34}{\displaystyle 0{,}0894 \frac{1}{\sqrt 5}} \approx 8{,}5041$

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |T| > tα (v).

Med 5 % signifikansnivå blir α = 0,05.

Vi slår opp i (kvantil)t-fordelingstabellen med α = 0,05 og v = 5 − 1 = 4, der det står 2,132. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,05; 4) i Excel eller inverstfordeling(4, 1 – 0.05) i GeoGebra.

Siden T ≈ 8,5041 > tα (v) ≈ 2,132, kan vi forkaste nullhypotesen. Testen gir absolutt grunnlag for å si at tilsetningsstoffet gir redusert bensinforbruk.

Oppgave 3:

En lege ønsker å undersøke om en medisin, som en bieffekt, reduserer blodtrykket. Han måler blodtrykket til 15 pasienter før og etter de begynner å ta medisinen, og får følgende resultat

 Før 70 80 72 76 76 76 72 78 82 64 74 92 74 68 84 
 Etter 78 72 62 70 58 66 68 52 64 72 74 60 74 72 74

Sett opp og gjennomfør en hypotesetest på 5 % signifikansnivå på om medisinen reduserer blodtrykket.

Se løsningsforslag

Sammenlikne forventning i Excel og GeoGebra

Excel har en egen funksjon for å gjøre hypotestetester om forskjeller mellom to datasett, t.test. Brukeren må angi hvilke celleområder de to datasettene ligger i, om det er en ensidig eller tosidig test, og om testen skal gjøres paret eller uparet. t.test beregner P-verdi. Er P-verdien mindre enn testens signifikansnivå, kan nullhypotesen forkastes.

Regnearket under har to ark. Ett for uparet test og ett for paret test.

RegnearkLast ned regneark med beregninger fra eksempel 2 og 3 og bruk av «t.test»
 

Sannsynlighetskalkulatoren i GeoGebra, som omtales i artikkelen om statistikk med GeoGebra, har også funksjonalitet for hypotesetester om forskjeller.

Sammenlikne binomiske sannsynligheter

I  artikkelen om hypotesetesting introduserer vi testobservatoren

$Z = \frac{\displaystyle \hat p − p_0}{\displaystyle \sqrt{\frac{p_0(1 – p_0)}{n}}}$

for binomiske sannsynligheter. Her er $\hat p$ estimert sannsynlighet basert på X suksesser i n forsøk, $\hat p = \frac{\displaystyle X}{\displaystyle n}$, og p0 er sannsynligheten i nullhypotesen.

For å teste hypoteser om forskjeller mellom sannsynligheter i to datasett bruker vi testobservatoren.

$\fbox{$Z = \frac{\displaystyle \hat p_1 − \hat p_2}{\displaystyle \sqrt{\hat p(1 − \hat p)(\frac{\displaystyle 1}{\displaystyle n_1} + \frac{\displaystyle 1}{\displaystyle n_2})}}$}$

Her er

$\hat p_1 = \frac{\displaystyle X_1}{\displaystyle n_1}$ estimert sannsynlighet i datasett 1.

$\hat p_2 = \frac{\displaystyle X_2}{\displaystyle n_2}$ estimert sannsynlighet i datasett 2.

$\hat p = \frac{\displaystyle X_1 + X_2}{\displaystyle n_1 + n_2}$ estimert sannsynlighet i begge datasettene samlet.

Dersom n1 og n2 er store nok, vil Z være tilnærmet standard normalfordelt. Som en tommelfingerregel for hva som menes med store nok, bør $n \hat p \ge 5$ og $n(1 − \hat p) \ge 5$ i begge datasettene.

Eksempel 4:

En bedrift produserer PC-skjermer ved to forskjellige anlegg. Noen skjermer er defekte, og bedriften vil undersøke om det er forskjell i sannsynlighetene for defekte skjermer ved de to anleggene. 200 skjermer undersøkes på hvert anlegg. På anlegg 1 er 17 defekte, på anlegg 2 er 31 defekte. Vi kaller sannsynligheten for defekte ved anlegg 1 for p1 og sannsynligheten for defekte ved anlegg 2 for p2, og skal teste følgende hypotese på 5 % signifikansnivå:

HA: p1p2 mot H0: p1p2.

Vi har n1n2 = 200, X1 = 17, X2 = 31.

Vi estimerer

$\hat p_1 = \frac{\displaystyle 17}{\displaystyle 200} = 0{,}0850$

$\hat p_2 = \frac{\displaystyle 31}{\displaystyle 200} = 0{,}1550$

$\hat p = \frac{\displaystyle 17 + 33}{\displaystyle 200 + 200} = 0{,}1200$

Og vi får

$Z = \frac{\displaystyle 0{,}0850 − 0{,}1550}{\displaystyle \sqrt{0{,}1200(1 − 0{,}1200)(\frac{\displaystyle 1}{\displaystyle 200} + \frac{\displaystyle 1}{\displaystyle 200})}} \approx −2{,}154$

Siden vi har en tosidig test, skal vi forkaste nullhypotesen hvis |Z| > zα/2

Med 5 % signifikansnivå blir α/2 = 0,05/2 = 0,025.

I (kvantil)normalfordelingstabellen finner vi at z0,025 ≈ 1,9600. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,025) i Excel eller inversnormalfordeling(0, 1, 1 – 0.025) i GeoGebra.

Siden |Z| ≈ 2,154 > zα/2 ≈ 1,9600, forkaster vi nullhypotesen og aksepterer den alternative hypotesen om at det er forskjell i sannsynligheten for defekt på de to anleggene.

Oppgave 4:

En bedrift produserer bukser ved to forskjellige produksjonslinjer. En del av buksene har defekte sømmer, og bedriften vil undersøke om det er forskjell i sannsynlighetene for defekter ved de to linjene. Ved første produksjonslinje er 147 av 2500 defekte, ved andre er 151 av 2000 defekte. Sett opp og test en hypotese om at sannsynligheten for defekter er forskjellig ved de to linjene. Bruk 5 % signifikansnivå.

Se løsningsforslag

Kilder

    • Ubøe, J. (2011). Statistikk for økonomifag. Gyldendal akademisk
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk
    • Bhattacharyya, G, Johnson, R.A. (1977) Statistical concepts and methods. John Wiley & Sons
    • Bjørkestøl K. (2015) Upublisert undervisningsmateriale.

Samvariasjon

I statistikk er vi ofte interessert i å sammenlikne datasett. Vi kan for eksempel lure på om det er noen sammenheng mellom gjennomsnittstemperatur og høyden på en type blomster.

Korrelasjonskoeffisient

Et praktisk mål for å vurdere om det er sammenheng mellom to sett variabler er korrelasjonskoeffisienten. Korrelasjonskoeffisienten måler i hvor stor grad verdiene i to datasett samvarierer, og er et tall mellom 1 og −1. 1 betyr fullstendig samvariasjon, for eksempel at høyden på en type blomster øker proporsjonalt med temperaturen, −1 betyr fullstendig omvendt samvariasjon, for eksempel at høyden på en type blomster synker proporsjonalt med temperaturen. 0 betyr at det ikke kan påvises noen samvariasjon. Mellom disse ytterpunktene er alle tall mulige. For eksempel vil 0,1 bety en svak samvariasjon, mens 0,9 betyr en sterk samvariasjon.

Hvis vi lager et plott av verdiene, vil data med fullstendig samvariasjon ligge på ei rett linje. Verdier uten samvariasjon vil ligge spredt tilfeldig utover.

Eksempel 1:

Høyde og vekt for 10 kvinnelige toppidrettsutøvere er gitt i tabellen under:

 Høyde (cm) 164 167 170 171 166 169 168 171 168 168
 Vekt (kg) 51 56 51 62 54 56 56 59 57 54

Korrelasjonskoeffisienten for disse dataene er ca. 0,626. Som vi kan forvente, har vi en positiv samvariasjon. Men den er ikke fullstendig, det vil vi sjelden finne i virkeligheten. Et plott av dataene er vist under, med høyde langs x-aksen og vekt langs y-aksen.
Illustrasjon av korrelasjonskoeffisient 0,626

Vi ser at det er et tydelig mønster i at større høyde henger sammen med større vekt, men samtidig er det avvik. Personen på 170 centimeter er for eksempel uvanlig lett i forhold til høyden.

Eksempel 2:

Vi manipulerer vektene i eksempel 1, slik at de blir som vist i tabellen under:

Høyde (cm) 164 167 170 171 166 169 168 171 168 168
Vekt (kg) 52,5 53,4 54,4 54,7 53,1 54,1 53,7 54,6 53,8 53,8

Nå har vi nesten perfekt samvariasjon, korrelasjonskoeffisienten er ca. 0,998. Lager vi et plott av dataene, ser vi at de ligger nesten fullstendig på linje.

Illustrasjon av korrelasjonskoeffisient 0,996

Eksempel 3:

Vi manipulerer vektene i eksempel 1 en gang til, slik at de blir som vist i tabellen under:

 Høyde (cm) 164 167 170 171 166 169 168 171 168 168
 Vekt (kg) 52 54 51 50 53 58 57 56 59 60

Nå har vi ingen samvariasjon, korrelasjonskoeffisienten er 0,000. Lager vi et plott av dataene, ser vi at de ligger spredt utover uten noe mønster:

Illustrasjon av korrelasjonskoeffisient 0,000

Korrelasjonskoeffisienten baserer seg på i hvilken grad avvik fra gjennomsnittet stemmer overens i de to datasettene. Positive bidrag til korrelasjonskoeffisienten vil vi for eksempel få hvis en høyde langt over gjennomsnittet korresponderer med en vekt langt over gjennomsnittet, en høyde litt over gjennomsnittet korresponderer med en vekt litt over gjennomsnittet, en høyde litt under gjennomsnittet med en vekt litt under gjennomsnittet, og så videre.

Kovarians

I artikkelen om måltall i statistikk lærer vi å beregne gjennomsnitt, X, og standardavvik. For å beregne standardavvik starter vi med å beregne kvadratavstanden mellom verdiene i datasettet og gjennomsnittet: (XiX)2.

Nå har vi to datasett, vi kaller det ene X og det andre Y. Produktet av avstandene mellom en verdi og gjennomsnittet i hvert av settene, (XiX)(YiY), vil gi et mål på i hvilken grad korresponderende verdier samvarierer. Hvis både (XiX) og (YiY) ligger mye over gjennomsnittet, vil vi produktet bli et stort, positivt tall. Det samme vil skje hvis begge verdiene ligger mye under gjennomsnittet. Vi får da et produkt av to store negative tall, noe som blir et stort positivt tall. Verdier nær gjennomsnittet vil gi små tall. Dersom den ene verdien ligger over og den andre under gjennomsnittet, vil produktet bli et negativt tall.

Når vi beregner summen av alle slike produkter og dividerer på 1 mindre enn antall produkter, n − 1, får vi kovariansen mellom settene.

$\fbox{$Cov(X, Y) = \frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)(Y_i − \overline Y)}{\displaystyle n − 1}$}$

Strengt tatt er det utvalgskovariansen vi beregner. Det finnes også en populasjonskovarians, der vi dividerer med n i stedet for n − 1, på samme måte som det finnes utvalgsstandardavvik og populasjonsstandardavvik, slik det beskrives i artikkelen om måltall i statistikk. For korrelasjonskoeffisienten spiller det imidlertid ingen rolle hvilken kovarians vi bruker.

Kovarians er, på samme måte som korrelasjonskoeffisient, et mål på samvariasjonen i to datasett, men er beheftet med noen ulemper. Ett problem er at kovariansen vil ha en enhet som er avhengig av enhetene i datasettene. I eksempel 1 vil enheten bli cm · kg. Et annet problem er at størrelsen på kovariansen avhenger av størrelsen på dataene. Hvis vi for eksempel får en kovarians på 100, må vi undersøke dataene for å avgjøre om denne tyder på høy eller lav samvariasjon.

Vi gjør derfor en normering ved å dividere kovariansen på produktet av standardavvikene i datasettene vi sammenlikner. Da blir vi kvitt enheten, og får en standardisert tallverdi som varierer mellom −1 og 1. Dette er korrelasjonskoeffisienten, R:

$\fbox{$R(X, Y) = \frac{\displaystyle Cov(X, Y)}{\displaystyle S^{\phantom 1}_X S^{\phantom 1}_Y}$}$

Skriver vi ut detaljene i formlene for kovarians og standardavvik, får vi 

$R(X, Y) = \frac{\frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)(Y_i − \overline Y)}{\displaystyle {n − 1}^{\phantom 1}}}{\sqrt \frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)^2}{\displaystyle {n − 1}^{\phantom 1}}\sqrt \frac{\displaystyle \sum_{i = 1}^n(Y_i − \overline Y)^2}{\displaystyle {n − 1}^{\phantom 1}}^{\phantom 1}}$

Nevnerne i delbrøkene under hovedbrøkstreken kan skrives som $\sqrt{n − 1} \cdot \sqrt{n − 1 } = n − 1$, så $n − 1$ kan forkortes i hovedbrøken, og vi får uttrykket

$\fbox{$R(X, Y) = \frac{\displaystyle \sum_{i = 1}^n(X_i − \overline X)(Y_i − \overline Y)}{\sqrt{\displaystyle \sum_{i = 1}^n(X_i − \overline X)^2\displaystyle \sum_{i = 1}^n(Y_i − \overline Y)^2 \;}}$}$

I noen kilder brukes den greske bokstaven ρ i stedet for R som symbol for korrelasjonskoeffisienten.

Eksempel 4:

Vi skal beregne korrelasjonskoeffisienten i eksempel 1. Vi viser ikke utregningen av gjennomsnitt og standardavvik i hvert av datasettene, hvordan vi gjør slike utregninger, vises i artikkelen om måltall i statistikk.

Vi kaller datasettet med høyder X og datasettet med vekt Y. Gjennomsnittene blir X = 168,2 og Y= 55,6, utvalgsstandardavvikene blir SX ≈ 2,201 og SY ≈ 3,373.

Summen av produktene av avstandene mellom verdi og gjennomsnitt i settene er:

(164 − 168,2)(51 − 55,6) + (167 − 168,2)(56 − 55,6) + (170 − 168,2)(51 − 55,6)
+ (171 − 168,2)(62 − 55,6) + (166 − 168,2)(54 − 55,6) + (169 − 168,2)(56 − 55,6)
+ (168 − 168,2)(56 − 55,6) + (171 − 168,2)(59 − 55,6) + (168 − 168,2)(57 − 55,6)
+ (168 − 168,2)(54 − 55,6) = 41,8

Kovariansen blir $Cov(X, Y) = \frac{\displaystyle 41{,}8}{\displaystyle 10-1} ≈ 4{,}64$.

Korrelasjonskoeffisienten blir $R(X, Y) = \frac{\displaystyle Cov(X, Y)}{\displaystyle S_X S_Y} \approx \frac{\displaystyle 4{,}64}{\displaystyle 2{,}201 \cdot 3{,}373} \approx 0{,}63$.

Oppgave 1:

To datasett med 4 korresponderende verdier er vist i tabellen under:

X1 = 242 X2 = 266 X3 = 218 X4 = 234
Y1 = 363 Y2 = 399 Y3 = 327 Y4 = 351

Beregn

  1. Gjennomsnittet i hvert av settene, X og Y
     
  2. Utvalgsstandardavviket i hvert av settene, SX og SY
     
  3. Kovariansen mellom settene, Cov(X, Y)
     
  4. Korrelasjonskoeffisienten mellom settene, R(X, Y)

Gi en tolkning av korrelasjonskoeffisienten.

Se løsningsforslag

Kovarians og korrelasjon i Excel og GeoGebra

Det er sjelden vi regner ut kovarians og korrelasjonskoeffisient manuelt. På litt avanserte kalkulatorer legger vi bare inn dataene, og så gjør kalkulatoren resten av jobben. I Excel bruker vi funksjonen kovarians.s til å beregne utvalgskovarians, kovarians.p til å beregne populasjonskovarians, og korrelasjon til å beregne korrelasjonskoeffisienten. I GeoGebra finnes ingen funksjon for å beregne utvalgskovarians, men funksjonen kovarians beregner populasjonskovarians og korrelasjonskoeffisient beregner korrelasjonskoeffisient.

RegnearkLast ned regneark med beregning av kovarians og korrelasjon på dataene fra eksempel 1

 
SkjermfilmSe filmen «Samvariasjon» (NB! I filmen brukes populasjonskovarians.)

Kilder

    • Ubøe, J. (2011). Statistikk for økonomifag. Gyldendal akademisk
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk
    • Bhattacharyya, G, Johnson, R.A. (1977) Statistical concepts and methods. John Wiley & Sons

Hypotesetesting

I eksempel 9 i artikkelen om estimering lager vi konfidensintervaller for sannsynligheten for å få kron når vi kaster en mistenkelig mynt 50 ganger og får 33 kron. Vi ser at et 95 % konfidensintervall ikke inkluderer sannsynligheten til en rettferdig mynt, som er 0,5. Det er derfor en plausibel hypotese at mynten er jukset med, slik at den gir flere kron enn mynt. I denne artikkelen skal vi lære å stille opp og teste slike hypoteser.

Teste sannsynligheter

Eksempel 1:

Vi ønsker å teste en hypotese om at en mynt gir for mange kron når vi får 33 kron i 50 kast. Vi kan aldri bekrefte eller avsanne en slik hypotese, siden myntkast er et stokastisk forsøk som styres av tilfeldigheter, men vi kan med en viss sannsynlighet anslå om den er riktig eller ikke. La oss si at vi ønsker å akseptere hypotesen hvis det er mindre enn 5 % sannsynlighet for at en rettferdig mynt gir 33 eller flere kron i 50 kast.

Vi har her en binomisk sannsynlighetsfordeling. Hvis mynten er rettferdig, er sannsynligheten for kron p = 0,5, og vi kan forvente å få μ = np = 50 · 0,5 = 25 kron. Variansen til fordelingen er σ2 = np(1 − p) = 50 · 0,5(1 − 0,5) = 12,5. Som vi ser i artikkelen om sentralgrenseteoremet, kan vi tilnærme fordelingen med en normalfordeling, N(μ, σ2) = N(25, 12,5).

Hvis vi får X kron i 50 kast, er sannsynligheten for dette mindre jo lengre X ligger over 25, det vil si jo lengre X ligger til høyre for toppen av normalfordelingskurven. Sagt på en annen måte, blir arealet under normalfordelingskurven til venstre for X større og større, og arealet til høyre mindre og mindre. Det vi ønsker å finne ut, er om 33 kron havner til høyre for verdien i normalfordelingen som har 95 % av arealet til venstre for seg og 5 % av arealet til høyre.

I en standard normalfordeling finner vi denne verdien ved å slå opp 0,05 i (kvantil)normalfordelingstabellen, der det står 1,6449. Alternativt kan vi finne verdien ved å skrive =norm.s.inv(1 – 0,05) i Excel eller inversnormalfordeling(0, 1, 1 – 0.05) i GeoGebra.

For å finne ut om X = 33 tilsvarer en verdi til venstre eller høyre for 1,6449 i en standard normalfordeling, gjør vi en standardisering av X, slik det beskrives i artikkelen om normalfordelingen. Vi subtraherer forventningsverdien fra resultatet og dividerer på fordelingens standardavvik.

Vi får $Z = \frac{\displaystyle 33 – 25}{\displaystyle \sqrt{12{,}5}} \approx 2{,}263$. Siden dette er til høyre for 1,6449, kan vi konkludere med at det er mindre enn 5 % sannsynlig å få 33 kron med en rettferdig mynt, og vi aksepterer hypotesen om at mynten gir for mange kron.

Situasjonen er illustrert i figuren under.

Illustrasjon av sannsynlighetsfordelinger av antall kron ved 50 myntkast

Formelt sett i hypotesetesting starter vi med å sette opp en alternativ hypotese og en nullhypotese. Den alternative hypotesen består av det vi skal teste, og skrives som HA. I eksempel 1 er den alternative hypotesen HA: p > 0,5, der p er sannsynligheten for å få kron. Nullhypotesen skrives som H0, og består av det motsatte alternativet. I eksempel 1 er nullhypotesen H0: p = 0,5. Det er ofte lettest å sette opp den alternative hypotesen først.

Så trenger vi en testobservator, som er variabelen vi bruker i testen. I eksempel 1 var observatoren X, som representerte antall kron.

Til slutt må vi bestemme oss for et forkastningsområde for testen. Forkastningsområdet er slik at hvis testobservatoren havner i området, skal nullhypotesen forkastes, og vi aksepterer derved den alternative hypotesen. I eksempel 1 tilsvarte forkastningsområdet det gule feltet i figuren over.

Sannsynligheten for at observatoren havner i forkastningsområdet kalles testens signifikansnivå, og betegnes ofte med α. I eksempel 1 var signifikansnivået α = 0,05. Merk at størrelsen på forkastningsområdet er beregnet ut fra forutsetningen om at nullhypotesen er sann. Grensen for forkastningsområdet i normalfordelingen kaller vi zα. I eksempel 1 var zα = z0,05 ≈ 1,6449.

I eksempel 1 brukte vi observatoren X, som var antall kron, deretter normaliserte vi resultatet slik at vi kunne bruke standard normalfordeling til å bestemme forkastningsområdet. Det kan imidlertid være praktisk å ha en observator som er ferdig standardisert. Hvis X ~ N(μ, σ2), setter vi $Z = \frac{\displaystyle X – \mu}{\displaystyle \sigma}$, der μ er fordelingens forventning og σ fordelingens standardavvik.

I en binomisk fordeling har vi at μ = np og σ2 = np(1 − p), så vi setter

$Z = \frac{\displaystyle X – np_0}{\displaystyle \sqrt{np_0(1 – p_0)}}$

Her er p0 sannsynligheten i nullhypotesen, og n antall forsøk. I eksempel 1 var dette henholdsvis 0,5 og 50.

Eksempel 2:

Vi kaster en mynt 1000 ganger, får 524 kron, og ønsker å teste en hypotese om at mynten gir for mange kron, med signifikansnivå 5 %.

Hvis mynten gir for mange kron, betyr det at sannsynligheten for kron er større enn 0,5, så den alternative hypotesen og nullhypotesen blir

HA: p > 0,5, H0: p = 0,5

Antall observasjoner er X = 524, antall forsøk er n = 1000, så testobservatoren blir

$Z = \frac{\displaystyle 524 – 1000 \cdot 0{,}5}{\displaystyle \sqrt{1000 \cdot 0{,}5(1 – 0{,}5)}} \approx 1{,}5179$

zα = z0,05 ≈ 1,6449, som i eksempel 1.

Siden Z ≈ 1,5179 $\ngtr$ zα ≈ 1,6449, kan ikke nullhypotesen forkastes på signifikansnivå 5 %. Det er altså ikke grunnlag for å hevde at mynten gir for mange kron.

Oppgave 1:

Vi kaster en terning 100 ganger og får 20 seksere. Sett opp nullhypotese og alternativ hypotese for at terningen gir for mange seksere, og test hypotesen med et signifikansnivå på 5 %.

Se løsningsforslag

Oppgave 2:

Vi kaster terningen fra oppgave 1 000 ganger og får 200 seksere. Test hypotesen fra oppgave 1 på nytt med de nye dataene, men med samme signifikansnivå. Sammenlikn med resultatet fra oppgave 1.

Se løsningsforslag

Når vi arbeider med binomiske sannsynligheter, er X er det samme som $n \hat p$, der n er antall forsøk og $\hat p$ den estimerte sannsynligheten for suksess i forsøket. Vi kan altså skrive testobservatoren som

$Z = \frac{\displaystyle n \hat p – np_0}{\displaystyle \sqrt{np_0(1 – p_0)}}$

Forkorter vi med n, får vi

$Z = \frac{\displaystyle \hat p – p_0}{\displaystyle \sqrt{\frac{p_0(1 – p_0)}{n}}}$

som vi kan bruke hvis vi baserer oss på den estimerte sannsynligheten for suksess i stedet for antall oppnådde suksesser.

Vi oppsummerer:

$\fbox{$\begin{align} &\text{Testobservator for binomisk sannsynlighet: }\\
&Z = \frac{\displaystyle X – np_0}{\displaystyle \sqrt{np_0(1 – p_0)}} \\
&\text{eller} \\
&Z = \frac{\displaystyle \hat p – p_0}{\displaystyle \sqrt{\frac{p_0(1 – p_0)}{n}}} \\
&\text{Sammenliknes med } z_\alpha \end{align}$}$

Vi forutsetter at vi har gjort om lag 30 forsøk eller mer.

Teste forventning

I artikkelen om estimering beregner vi grensene for et konfidensintervall basert på forventning og standardavvik. Vi kan på samme måte benytte dette i en hypotesetest. I stedet for å basere testobservatoren på antall suksesser eller estimert sannsynlighet for suksess, baserer vi den på gjennomsnitt og standardavvik: 

$Z = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{\sigma}{\sqrt n}}$.

Her er X observert gjennomsnitt, μ0 forventning, σ standardavviket i modellen, og n antall observasjoner. Generelt bør vi ha minst 30 observasjoner, men vi kan fire på dette kravet hvis vi arbeider med en normalfordelt populasjon.

Eksempel 3:

En maskin som produserer dressing, skal i gjennomsnitt tilsette 10 ml olje pr. pakke. Mengden olje er normalfordelt med et standardavvik på σ = 0,65 ml. 

Det er mistanke om at maskinen er feiljustert og tilsetter for mye olje, så bedriften måler oljeinnholdet i 20 pakker, og finner et gjennomsnitt på 10,5 ml.

De ønsker så å teste en hypotese om at oljeinnholdet er høyere enn forventningen på μ0 = 10 ml, med et signifikansnivå på 1 %.

Hypotesene blir HA: μ > 10, H0: μ = 10.

Vi har X = 10,5, og σ = 0,65.

Så testobservatoren blir

$Z = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{\sigma}{\sqrt n}} = \frac{\displaystyle 10{,}5 – 10}{\displaystyle \frac{0{,}65}{\sqrt{20}}} \approx 3{,}44$.

Fra (kvantil)normalfordelingstabellen finner vi at zα = z0,01 ≈ 2,3263. Alternativt kan vi finne denne verdien ved å skrive =norm.s.inv(1 – 0,01) i Excel eller inversnormalfordeling(0, 1, 1 – 0.01) i GeoGebra.

Siden Z ≈ 3,44 > zα ≈ 2,3263, forkaster vi nullhypotesen, og aksepterer den alternative hypotesen om at maskinen i gjennomsnitt tilsetter mer enn 10 ml olje.

Oppgave 3:

Etter å ha justert maskinen i eksempel 3, måles gjennomsnittsoljeinnholdet i 25 pakker til 10,3 ml. Sett opp og gjennomfør en hypotesetest med et signifikansnivå på 1 % på om oljeinnholdet fremdeles er høyere enn 10 ml.

Se løsningsforslag

Nullhypotesene vi har operert med så langt, har bestått i at forventningen har en bestemt verdi, for eksempel H0: μ = 10 i eksempel 3. Men i mange tilfeller vil det være mer realistisk med en nullhypotese som hevder at forventningen er mindre eller lik en bestemt verdi, for eksempel at en fabrikant påstår at fettinnholdet i deres kjøttdeig i gjennomsnitt er maksimalt 10 gram, noe som vil gi H0: μ ≤ 10 som nullhypotese. Dette påvirker imidlertid ikke resultatet av hypotesetesten, fordi kriteriet for å forkaste nullhypotesen er det samme, og den alternative hypotesen er den samme.

Eksempel 4:

En produsent hevder at deres syltetøy i gjennomsnitt inneholder maksimalt 20 gram sukker per 100 gram syltetøy. Skal vi sette opp en hypotesetest om at syltetøyet inneholder mer sukker, blir den alternative hypotesen HA: μ > 20, og nullhypotesen H0: μ ≤ 20.

Ukjent standardavvik

Som vi ser i artikkelen om estimering, kjenner vi ofte ikke standardavviket i en populasjon. Da tilnærmer vi med utvalgsstandardavviket, men innfører da også en usikkerhet. I artikkelen om estimering ser vi da at vi skifter ut normalfordelingen med t-fordeling, noe som fører til at konfidensintervallet blir bredere.

Dersom vi i en hypotesetest ikke kjenner populasjonens standardavvik, tilnærmer vi på samme måte med utvalgsstandardavviket, og skifter fra normalfordeling til t-fordeling, med antall frihetsgrader lik antall observasjoner minus 1. t-kurvene blir bredere jo færre frihetsgrader vi har, noe som betyr at forkastningsområdet i en hypotesetest beveger seg bort fra gjennomsnittet. Med andre ord blir det vanskeligere blir å forkaste, jo færre observasjoner vi har,

Testobservatoren blir omtrent den samme som når standardavviket er kjent, men vi kaller den T i stedet for Z, og bruker S i stedet for σ:

$T = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{S}{\sqrt n}}$

For å finne grensen for forkastningsområdet bruker vi (kvantil)t-fordelingstabellen i stedet for normalfordelingstabellen.

Eksempel 5:

På en planteskole oppdager de at 15 planter som ved et uhell er satt i feil type jord, later til å ha blitt høyere enn normalt. Høyden på denne plantetypen har i vanlig jord vært normalfordelt med et gjennomsnitt på 30,2 cm. Gjennomsnittshøyden på plantene i feil jord måles til 31,2 cm, med et standardavvik på 2,3 cm. Nå ønsker planteskolen å gjennomføre en hypotesetest på signifikansnivå 5 % for å se om den andre typen jord øker gjennomsnittshøyden til plantene.

Hypotesene blir HA: μ > 30,2, H0: μ = 30,2.

Vi har X = 31,2 og S = 2,3.

Fordi σ er ukjent, må vi bruke t-fordeling med a = α = 0,05 og v = 15 − 1 = 14 for å finne grensen til forkastningsområdet. Vi slår opp i (kvantil) t-fordelingstabellen og får t0,05 (14) ≈ 1,761. Alternativt kan vi finne denne verdien ved å skrive =t.inv(1 – 0,05; 14) i Excel eller inverstfordeling(14, 1 – 0.05) i GeoGebra.

Testobservatoren blir

$T = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 31{,}2 – 30{,}2}{\displaystyle \frac{2{,}3}{\sqrt{15}}} \approx 1{,}68$.

Siden T ≈ 1,68 $\ngtr$ t0,05 (14) ≈ 1,761, kan vi ikke forkaste nullhypotesen, og har på 5 % signifikansnivå ikke grunnlag for å si at den andre typen jord øker gjennomsnittshøyden til plantene.

Hadde vi i stedet for t-fordelingstabellen brukt normalfordelingstabellen, ville grensa til forkastningsområdet blitt z0,05 ≈ 1,6449, og siden T ≈ 1,68 > z0,05 ≈ 1,6449, ville vi forkastet nullhypotesen og akseptert at den nye typen jord økte gjennomsnittshøyden til plantene. En feil som oppsto på grunn av at vi da ikke tok hensyn til den økte usikkerheten estimeringen av standardavviket førte med seg.

Oppgave 4:

Ventetiden på å få svar på en servicetelefon er normalfordelt, med en gjennomsnittlig ventetid oppgitt til 30 sekunder. En internkontroll med 15 oppringninger på tilfeldige tidspunkter viser en gjennomsnittlig ventetid på 37 sekunder, med et standardavvik på 14 sekunder. Sett opp og gjennomfør en hypotesetest på signifikansnivå 5 % på om oppgitt gjennomsnittlig ventetid er for lav.

Se løsningsforslag

Vi oppsummerer:

$\fbox{$\begin{align}& \text{Testobservator for forventning: }\\
\\
&\sigma \text{ kjent:} \\
&Z = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{\sigma}{\sqrt n}} \\
&\text{ } \\
&\sigma \text{ ukjent:} \\
&T = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{S}{\sqrt n}} \\
&\text{ } \\
&Z \text{ sammenliknes med } z_{\large \alpha} \text{ og } T \text{ med } t_{\large \alpha \, (n – 1)} \end{align}$}$

Dersom vi har om lag 30 målinger eller mer, kan vi bruke normalfordeling i stedet for t-fordeling, siden de to fordelingene da er omtrent like.

Venstresidige og tosidige tester

I alle eksemplene og oppgavene vi har arbeidet med så langt, har den alternative hypoteser vært at forventningen ligger over en gitt verdi, HA: μ > x. Forkastningsområdet for nullhypotesen har da ligget til høyre under normal- eller t-fordelingskurven:

Illustrasjon av forkastningsområde til høyre under fordelingskurve.

Vi forkaster nullhypotesen hvis Z > zα eller T > tα (v). Men selvfølgelig er det like aktuelt å teste det motsatte, at forventningen ligger under en gitt verdi, HA: μ < x. Forkastningsområdet for nullhypotesen vil da ligge til venstre under normal- eller t-fordelingskurven:

Illustrasjon av forkastningsområde til venstre under fordelingskurve.

Vi forkaster nullhypotesen hvis Z < −zα eller T < −tα (v).

Eksempel 6:

I et oppdrettsanlegg mistenker de at laksen har mindre enn forventet vekt, som er 4,5 kg. De fanger 29 fisk og måler at gjennomsnittsvekten er X = 4,24 kg, med et standardavvik på S = 0,71 kg. Så vil de gjennomføre en hypotesetest med signifikansnivå på 5 % på om laksen har mindre enn forventet vekt.

Hypotesene blir HA: μ < 4,5, H0: μ = 4,5.

Vi bruker t-fordeling med 29 – 1 = 28 frihetsgrader.

Testobservatoren blir

$T = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 4{,}24 – 4{,}5}{\displaystyle \frac{0{,}71}{\sqrt 29}} \approx -1{,}972$.

Grenseverdien for forkastningsområdet blir −t0,05 (28) ≈ −1,701.

Siden T ≈ −1,972 < –t0,05 (28) ≈ −1,701, forkaster vi nullhypotesen, og aksepterer hypotesen om at laksen har mindre enn forventet vekt.

Oppgave 5:

En produsent hevder at syltetøyet deres i gjennomsnitt inneholder minst 50 % bær. Mattilsynet mistenker at bærinnholdet er lavere, måler innholdet i 30 glass syltetøy, og finner et gjennomsnitt på 47,7 %, med et standardavvik på 5,7 %. Sett opp og gjennomfør hypotesetester på signifikansnivå 5 % og signifikansnivå 1 % på om syltetøyet inneholder for lite bær.

Se løsningsforslag

Tester på om forventningen ligger over en gitt verdi, eller under en gitt verdi, kalles ensidige tester. Vi har sett at de alternative hypotesene i disse tilfellene er HA: μ > x for en høyresidig test, og HA: μx for en venstresidig test.

Men det kan også være aktuelt å teste om forventningen er ulik en gitt verdi. Det kalles en tosidig test, og den alternative hypotesen blir HA: μx. Forkastningsområdet for nullhypotesen vil da fordele seg på to sider, med den ene halvparten til venstre, og den andre halvparten til høyre under normal- eller t-fordelingskurven:

Illustrasjon av forkastningsområde på begge sider under fordelingskurve.

Vi forkaster nullhypotesen hvis |Z| > zα/2 eller |T| > tα/2 (v).

Vi legger merke til at grensen for forkastningsområdet nå beregnes basert på α/2 i stedet for α. Det er fordi hvert av forkastningsområdene nå er halvparten så store som i en ensidig test.

Eksempel 7:

En maskin fyller tomatbønner på boks. Brutto fyllvekt oppgis å være normalfordelt med et gjennomsnitt på 425 gram og et standardavvik på 5 gram. Etter en overhaling gjennomføres en sjekk på 20 bokser, som i snitt viser seg å inneholde 427 gram. Det skal så gjøres en hypotesetest på 5 % signifikansnivå på om mengden bønner i boksene er korrekt.

Hypotesene blir HA: μ ≠ 425, H0: μ = 425.

Testobservatoren blir

$Z = \frac{\displaystyle \overline X – \mu_0}{\displaystyle \frac{S}{\sqrt n}} = \frac{\displaystyle 427 – 425}{\displaystyle \frac{5}{\sqrt 20}} \approx 1{,}789$.

Grenseverdien for forkastningsområdet blir z0,05/2 = z0,025 ≈ 1,960.

Siden |Z| ≈ 1,789 $\ngtr$ z0,025 ≈ 1,960, kan vi ikke forkaste nullhypotesen om at vekten er korrekt.

Oppgave 6:

Mengden sukker en maskin tilsetter i en kakemiks, er oppgitt å være normalfordelt med et gjennomsnitt på 83 gram. En bedrift tar 15 stikkprøver, og finner ut at gjennomsnittlig mengde sukker er 82,5 gram, med et standardavvik på 0,6 gram. Sett opp og gjennomfør en hypotesetest på signifikansnivå 1 % på om sukkermengden er korrekt.

Se løsningsforslag

Hypotesetesting i Excel og GeoGebra

Slettet:

Excel har en funksjon for hypotesetesting, z.test, som returnerer en såkalt P-verdi. P-verdien er, gitt at nullhypotesen er sann, sannsynligheten for et resultat som er likt med eller mer ekstremt enn det observerte. Definisjonen er tung, men bruken enkel: Hvis P-verdien er lavere enn testens signifikansnivå, kan nullhypotesen forkastes. Denne funksjonen er imidlertid litt klumpete i bruk, så vi går ikke nærmere inn på den. Den krever at alle testdata listes opp, det er ikke nok å angi et gjennomsnitt, og den er dessuten låst til høyresidige tester, så for venstresidige eller dobbeltsidige tester må det gjøres noe regnearbeid i tillegg. Sannsynlighetskalkulatoren i GeoGebra, som omtales i artikkelen om statistikk med GeoGebra, er imidlertid både enkel og fleksibel å bruke til slike tester.

Feil og teststyrke

Vi kan, som nevnt innledningsvis, aldri avsanne eller bekrefte en hypotese med en hypotesetest, bare med en viss sannsynlighet anslå om den er riktig eller ikke. Det betyr at vi i en hypotesetest kan komme til å trekke feil konklusjon. Det er to feil vi kan gjøre:

  1. Forkaste nullhypotesen selv om den er sann. Dette kalles forkastningsfeil, eller type 1 feil.
     
  2. Beholde nullhypotesen selv om den er usann. Dette kalles godtakingsfeil, eller type 2 feil.

Feiltypene refererer altså til nullhypotesen, ikke den alternative hypotesen.

Som vi har sett, forkaster vi nullhypotesen hvis testobservatoren havner i forkastningsområdet. Grensen for forkastningsområdet beregnes ut fra en antakelse om at nullhypotesen er sann.

Eksempel 8:

Vi mistenker at en mynt gir for mange kron. Nullhypotesen er at mynten er rettferdig, med 50 % sjanse for kron: H0: p = 0,5. Den alternative hypotesen er at mynten gir for mange kron: HA: p > 0,5.

I eksempel 2 så vi at 524 kron i 1000 kast ikke var nok til å forkaste nullhypotesen med et signifikansnivå på 5 %. Men hvor går egentlig grensen for forkastningsområdet?

I eksempel 2 så vi at z ≈ 1,6449 dannet grensen i en standard normalfordeling. For å finne ut hvilken x i den opprinnelige fordelingen som tilsvarer denne verdien, bruker vi standardiseringsformelen $z = \frac{\displaystyle x – np}{\displaystyle \sqrt{np(1 – p)}}$ baklengs:

$z = 1{,}6449$
$\Downarrow$
$\frac{\displaystyle x – 0{,}5 \cdot 1000}{\displaystyle \sqrt{1000 \cdot 0{,}5(1-0{,}5)}} = 1{,}6449$
$\Downarrow$
$x = 1{,}6449 \cdot \sqrt{1000 \cdot 0{,}5(1-0{,}5)} + 0{,}5 \cdot 1000 \approx 526$

Grensen for forkastningsområdet går altså på om lag 526 kron.

Men hva om det i eksempel 8 også var mulig at mynten ga for få kron? Da ville vi ikke lenger ha noen fast p å regne med når vi skulle beregne grensen for forkastningsområdet.

Hvis p var 0,49, ville vi få $x = 1{,}6449 \cdot \sqrt{1000 \cdot 0{,}49(1-0{,}49)} + 0{,}49 \cdot 1000 \approx 516$.

Hvis p var 0,48, ville vi få $x = 1{,}6449 \cdot \sqrt{1000 \cdot 0{,}48(1-0{,}48)} + 0{,}48 \cdot 1000 \approx 505$.

Jo lavere p, jo lenger mot venstre kryper 5 %-grensa. Sagt på en annen måte, blir sannsynligheten for å få 526 kron eller mer lavere og lavere, jo lavere p er. Det betyr at sannsynligheten for å feilaktig forkaste nullhypotesen også blir lavere og lavere, jo lavere p er. Så den maksimale sannsynligheten for å feilaktig forkaste nullhypotesen er når p = 0,5. I det verst tenkelige tilfelle er altså sannsynligheten for å gjøre en forkastningsfeil den samme som testens signifikansnivå.

Hvis den alternative hypotesen er sann, er det ikke mulig å gjøre forkastningsfeil, for da er det jo riktig å forkaste nullhypotesen. Men vi kan gjøre en godtakingsfeil, som er det motsatte, godta nullhypotesen selv om den skulle vært forkastet.

Eksempel 9:

Hvis mynten fra eksempel 8 faktisk gir for mange kron, det vil si at p > 0,5, gjør vi en godtakingsfeil hvis vi godtar nullhypotesen om at mynten ikke gir for mange kron. Hvor sannsynlig dette er, avhenger av hva verdien til p faktisk er.

Vi godtar altså nullhypotesen hvis vi får færre enn 526 kron.

Er p = 0,51, er sannsynligheten for å få færre enn 526 kron

$G(\frac{\displaystyle 526 – 0{,}51 \cdot 1000}{\displaystyle \sqrt{1000 \cdot 0{,}51(1-0{,}51)}}) \approx G(1{,}01)$.

Fra normalfordelingstabellen ser vi at dette er ca. 0,8443. Sannsynligheten for å gjøre en godtakingsfeil er altså over 84 % hvis det bare er 0,01 som skiller mynten fra en rettferdig mynt.

En hypotesetests styrkefunksjon gir sannsynligheten for å forkaste nullhypotesen. Funksjonen kalles ofte γ eller β.

For situasjonen i eksempel 8 og 9 får vi for eksempel at

$\gamma(p) = 1 – G(\frac{\displaystyle 526 – p \cdot 1000}{\displaystyle \sqrt{1000 \cdot p(1-p)}})$,

med en graf som vist under:

Styrkefunksjon for p med 1000 forsøk.

Vi ser at sannsynligheten for å forkaste nullhypotesen – at mynten ikke gir for mange kron er omtrent 0 når p ≤ 0,49, den er lik signifikansnivået på 5 % når p = 0,5, og nesten 100 % når p ≥ 0,57.

Vi kan øke styrken, det vil si redusere sannsynligheten for godtakingsfeil, ved å redusere signifikansnivået, men da øker vi samtidig sannsynligheten for forkastningsfeil. Vil vi øke styrken uten å ofre signifikansnivået, må vi øke antall observasjoner.

I figuren under har vi i tillegg til styrkefunksjonen vist over, også tegnet inn styrkefunksjonen ved 2000 observasjoner med rødt, og for 4000 observasjoner med grønt. Signifikansnivået er 5 % i alle tilfeller.

Styrkefunksjoner for p med 1000, 2000 og 4000 forsøk.

Vi ser at jo flere observasjoner vi har, jo brattere stiger kurven, og jo nærmere kommer den det ideelle, å hoppe direkte fra 0 til 1 idet p passerer 0,5.

Vi har her brukt en ensidig test i en binomisk modell, men prinsippet er det samme i andre modeller.

Kilder

    • Ubøe, J. (2011). Statistikk for økonomifag. Gyldendal akademisk
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk
    • Bjørkestøl K. (2015) Upublisert undervisningsmateriale.