Hva er en funksjon?
Eksempel 1:
Dersom en bil kjører i 50 km/t, vil den etter x timer ha kjørt 50 · x kilometer. For eksempel har den etter x = 2 timer kjørt 50 · 2 = 100, altså 100 kilometer, og etter x = 3,5 timer 50 · 3,5 = 175, altså 175 kilometer. Uttrykket 50 · x er en formel som for alle mulige verdier av antall timer, x, gir oss svar på hvor langt bilen har kjørt. Det er for øvrig vanlig å sløyfe multiplikasjonstegnet, så vi skriver bare 50x.
En slik formel kalles gjerne en funksjon, og skrives f(x). I eksempel 1 har vi at f(x) = 50x. Uttrykket som beskriver hva funksjonen gjør, altså 50x, kalles gjerne funksjonsforskriften.
Eksempel 2:
Dersom en ball slippes fra et fly, vil den etter x sekunder ha falt om lag 5x2 meter, hvis vi ikke tar hensyn til luftmotstand. Funksjonen som beskriver hvor langt den om lag har falt etter x sekunder er altså f(x) = 5x2.
Vi kan se for oss en funksjon, f, som en boks der vi putter inn en verdi, x, og får ut en ny verdi, f(x), slik som illustrert under
I stedet for f(x) skriver vi av og til y, for eksempel y = 5x2.
x og y kalles variable. x heter uavhengig variabel fordi den kan varieres fritt. y heter avhengig variabel fordi verdien avhenger av verdien til x.
Dersom vi velger et tall, x = a, og putter det inn i funksjonen, skriver vi f(a). Dersom vi for eksempel putter x = 3 inn i funksjonen i eksempel 1, får vi f(3) = 50 · 3 = 150.
Definisjons- og verdimengde
Selv om x er uavhengig, kan det finnes begrensninger på hvilke verdier som er tillatt. I eksempel 1 må vi for eksempel ha at x ≥ 0 fordi bilen ikke kan ha kjørt i mindre enn 0 timer. Hvis bilen stopper etter 5 timer, betyr det videre at x ≤ 5. I eksempel 2 må vi av samme grunn ha x ≥ 0, og det vil finnes en øvre grense for x bestemt av når ballen treffer bakken.
Mengden av tillatte verdier for x kalles funksjonens definisjonsmengde, Df. Hvis bilen i eksempel 1 stopper etter 5 timer, har vi at Df = [0, 5], altså mengden av alle reelle tall fra og med 0 til og med 5.
Mengden av tall funksjonen kan gi ut kalles funksjonens verdimengde, Vf. Hvis bilen i eksempel 1 stopper etter 5 timer, har vi at Vf = [0, 250], fordi når x (antall timer) varierer mellom 0 og 5, varierer f(x) (antall kilometer) mellom 0 og 250.
Sidene i en rektangulær innhegning er henholdsvis x og 5 – x, slik som vist under:
- Finn funksjonen, f(x), som beskriver hvordan arealet i innhegningen varierer med x.
- Hva er funksjonens definisjonsmengde?
Vi spurte ikke etter verdimengden i oppgave 1, den er ikke så lett å finne i dette tilfellet. I eksempel 1 fant vi grensene til verdimengden ved å sette grensene til definisjonsmengden inn i funksjonen, f(0) = 0 og f(5) = 250. Tilsvarende metode vil vi også kunne bruke på eksempel 2. Men i oppgave 1 får vi den laveste verdien ved begge grensene, f(0) = 0 og f(5) = 0. Den øvre verdien vil vi få for en x som ligger et sted mellom 0 og 5. På grunn av symmetrien skjønner vi kanskje at vi får størst areal når x ligger midt mellom 0 og 5, f(2,5) = 6,25. Verdimengden er Vf = [0, 6,25].
Grafer
For å illustrere hvordan f(x) varierer med x, er det vanlig å tegne en graf. Vi lager et koordinatsystem ved å la en vertikal tallinje stå vinkelrett på en horisontal tallinje, og plotter x horisontalt og f(x) vertikalt. Det finnes en mengde dataprogrammer til å tegne grafer. Ett av dem er GeoGebra som det finnes en serie artikler om på dette nettstedet. Avanserte kalkulatorer kan også tegne grafer.
Grafene til eksempel 1, eksempel 2 og oppgave 1 er vist under. Legg merke til at vi bare tegner graf for verdier av x som er innenfor definisjonmengden.
Fram til nå har vi hele tiden kalt den uavhengige variabelen for x, og funksjonen for f. Det er imidlertid helt i orden å bruke andre navn. I situasjoner der den uavhengige variabelen representerer tid, som i eksempel 1 og 2, er det vanlig å kalle variabelen t. I eksempel 1 ville vi for eksempel hatt f(t) = 50t. Arbeider vi med flere funksjoner samtidig, bør de ha forskjellig navn, for eksempel g(x), h(x), etc. g og h er valgt fordi de kommer etter f i alfabetet, men vi kan også godt velge navn som indikerer hva funksjonen gjør. v for en funksjon som beregner volum, eller a for en funksjon som beregner areal, slik som i oppgave 1, a(x) = –x2 + 5x.
Vi sa tidligere at vi kan skrive en enkelt bokstav, y, i stedet for det mer omstendelige f(x). Hva skal vi så velge – og når? Begge notasjonene har sine fordeler, f(x) indikerer tydelig at det dreier seg om en funksjon. Arbeider vi med flere funksjoner samtidig, kan vi lett skille dem fra hverandre ved å gi dem forskjellige navn, g(x), h(x), etc.
I andre sammenhenger kan denne notasjonen bli litt klumpete. Det er for eksempel enklere å angi et punkt som (x, y) enn (x, f(x)). Selv om vi står fritt til å velge navn, er det allikevel konvensjoner vi bør respektere. Har vi for eksempel to variable, x og y, er det vanlig at x er den uavhengige og y er den avhengige. Å bytte disse rundt, slik som i x = f(y) vil skape forvirring. Så vi må håndtere at funksjoner og variable kan ha mange forskjellig navn, men samtidig være oppmerksom på at det finnes konvensjoner vi bør følge.
Kilder
- Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget