Funksjonsanalyse med GeoGebra

I denne artikkelen skal vi se hvordan vi kan bruke GeoGebra til å lage grafer og punkter, finne funksjonsverdier, skjæringspunkter, ekstremalpunkter, vendepunkter og asymptoter, samt lage verditabeller og bruke glidere.

Eksempel 1:

Vi skal studere funksjonen f(x) = x4 + 6x3 + 7x2 − 5x − 1. Vi starter med å skrive inn funksjonsforskriften i inntastingsfeltet. Potenser angis med en hatt (^), så det blir
x^4 + 6x^3 + 7x^2 – 5x – 1. Grafen kommer opp i grafikkfeltet mens vi skriver, og når vi trykker på linjeskift-tasten, kommer funksjonsforskriften opp i algebrafeltet:

Graf til en fjerdegradsfunksjon i GeoGebra

Det kan være at vi må justere på akseverdiene for å få bildet slik som vist i eksempel 1. For å justere på akseverdiene åpner vi innstillinger-dialogboksen ved å velge «Rediger» – «Egenskaper», klikker på trekantsymbolet, og velger min- og maksverdier for x og y. I bildet over er «x-min» = -6, «x-max» = 3, «y-min» = -8, «y-max» = 10. (I stedet for å velge fra hovedmenyen kan vi også få opp innstillinger-dialogboksen ved å høyreklikke i grafikkfeltet eller på funksjonsforskriften i algebrafeltet og velge «Egenskaper»).

Punkter

Det finnes flere måter å lage punkter på, beskrevet i brukermanualen. Her skal vi lage punkter ved å skrive inn koordinatene, (x, y), i inntastingsfeltet, for eksempel (2, 3) eller (-2, 1). Punktene dukker opp både i algebrafeltet og i grafikkfeltet, og gis navn fortløpende med store bokstaver, A, B, C, etc. Vi kan også gi punktene egne navn, da skriver vi navnet og et likhetstegn foran koordinatene, for eksempel Origo = (0, 0). Et punktnavn kan altså bestå av flere bokstaver. NB! Første bokstav i navnet må være stor (versal), ellers blir punktet tolket som en vektor.

Funksjonsverdier

Med funksjonsverdien mener vi den verdien en funksjon gir ut når vi putter inn en gitt x-verdi. For å finne en funksjonsverdi, skriver vi funksjonsnavnet med den ønskede x-verdien i parentes i inntastingsfeltet. Har vi lagt inn en funksjon, f(x), finner vi for eksempel verdien til f i x = 1 ved å skrive f(1). Funksjonsverdien kommer opp i algebrafeltet, med navnet a. Navnene tildeles fortløpende på samme måte som for punkter, a, b, c, etc., men kan også gis egne navn på samme måte, for eksempel start = f(0). Vi kan fritt bruke både store og små bokstaver.

Basert på x-verdien og den tilhørende funksjonsverdien kan vi lage punkter på grafen til f(x). Har vi for eksempel funnet to funksjonsverdier, a = f(1) og b = f(−1), skriver vi (1, a) og (-1, b) i inntastingsfeltet.

Vi kan også lage et punkt på grafen uten å finne funksjonsverdien eksplisitt først. Vil vi for eksempel lage et punkt på grafen der x-verdien er −2, skriver vi (-2, f(-2)).

Oppgave 1:

Bruk GeoGebra til å tegne grafen til funksjonen g(x) = x3 − 4x + 2, og plott punktene på grafen som har x-verdi −1 og 1. Kall punktene A og B.

SkjermfilmSe film der løsningen vises
 

NB! I den løsningen som vises på filmen heter funksjonen z(x). Nå godtar ikke lenger GeoGebra z som funksjonsnavn, så oppgaven spør derfor etter g(x). Når du ser filmen, må du bare derfor huske å skrive g alle steder filmen sier z.

Skjæringspunkter

Med GeoGebra kan vi finne skjæringspunktene mellom to kurver, eller mellom en kurve og aksene. En enkel måte å gjøre det på er å velge «Skjæring mellom to objekt» fra menyen som vist under.

Menyvalg for å finne skjæring mellom to punkter i GeoGebra

Deretter klikker vi på kurvene/aksene vi vil finne skjæringspunktene mellom. Bildet under viser skjæringspunktene mellom
f(x) = x4 + 6x3 + 7x2 − 5x − 1 og x-aksen.

Skjæring mellom graf og x-akse i GeoGebra

Disse punktene representerer de fire løsningene til fjerdegradslikningen
 x4 + 6x3 + 7x2 − 5x − 1 = 0.

Ekstremalpunkter, nullpunkter og vendepunkter

Med GeoGebra kan vi finne en funksjons ekstremalpunkter, det vi si maksimums- og minimumspunkter, nullpunkter og vendepunkter.

I det følgende forutsetter vi at funksjonen f(x) er en polynomfunksjon. GeoGebra har mulighet for å finne ekstremalpunkter og nullpunkter til andre funksjonstyper også, men kommandoene krever flere parametere, og vi går ikke inn på det her. Sjekk i brukermanualen. Vendepunkter kan vi bare finne i polynomfunksjoner.

Ekstremalpunktene finner vi ved å skrive ekstremalpunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel ekstremalpunkt(f).

Nullpunktene finner vi ved å skrive nullpunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel nullpunkt(f). Nullpunktene er de samme som vi finner ved å be om skjæringspunktene mellom kurven og x-aksen.

Vendepunktene finner vi ved å skrive vendepunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel vendepunkt(f).

Oppgave 2:

Ta utgangspunkt i funksjonen f(x) = x3 + 2x2 − x − 2.

      1. Bruk GeoGebra til å finne ekstremalpunktene til funksjonen.
         
      2. Bruk GeoGebra til å finne funksjonens vendepunkt.
         
      3. Bruk GeoGebra til å løse likningen x3 + 2x2 − x − 2 = 0.

Se løsningsforslag

​Asymptoter

GeoGebra kan finne både horisontale, vertikale og skrå asymptoter. For å finne asymptotene til en funksjon skriver vi asymptote i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel asymptote(f).

Asymptotene presenteres i form av ei liste. Hvis en funksjon ikke har noen asymptoter, er lista tom.

Oppgave 3:

Finn eventuelle asymptoter til funksjonene

      1. $f(x) = 3 + \frac{\displaystyle 2}{\displaystyle x + 4}$
         
      2. $g(x) = x^2 + 3x − 2$

Se løsningsforslag

Lage verditabell

Ønsker vi å lage mange punkter langs en graf, er det tungvint å skrive inn x-verdiene én og én slik vi gjorde tidligere. Mye mer effektivt er det å bruke regneark-funksjonen til å generere en mengde punkter automatisk. Hvordan dette gjøres, er det lettest å vise ved hjelp av en film.

SkjermfilmSe film om å lage verditabell
 

Oppgave 4:

Tegn grafen til f(x) = x3 − 4x + 2 og bruk verditabell til å plotte punkter på grafen med x-verdier fra −2 til 2 i sprang på 0,2.

Det er ikke laget eget løsningsforslag til denne oppgaven, men den er nesten helt lik det som vises i filmen om å lage verditabell, så bruk filmen til hjelp.

Bruke glidere

Av og til ønsker vi å se hvordan grafen til en funksjon endrer seg når en konstant endrer seg. For eksempel studere hvordan stigningen til grafen til f(x) = ax + b endrer seg når a endrer seg, og hvordan skjæringspunktet med y-aksen endrer seg når b endrer seg.

Til det kan vi bruke glidere. En glider som heter a er vist under. I GeoGebra kan vi klikke på prikken og dra den mot høyre for å øke verdien til a, og mot venstre for å redusere verdien til a.

Glider i GeoGebra

For å sette inn en glider, velger vi fra menyen som vist under:

Velge glider fra menyen i GeoGebra

Deretter klikker vi på stedet i grafikkfeltet der vi vil ha glideren.
Vi får opp en dialogboks som vist under:

Dialogboks for å angi glider-data

Det viktigste her er å velge riktig navn. GeoGebra foreslår a som navn på første glider, b som navn på andre og så videre. Dette navnet må samsvare med parameteren vi skal undersøke. Dersom vi for eksempel skal undersøke k i funksjonen f(x) = kx2, må glideren hete k.

Når vi har valgt navn, må vi velge intervall, det vil si hvilket tallområde glideren skal dekke. I dialogboksen over er «Min» = -5 og «Maks» = 5, det betyr at glideren dekker intervallet [−5, 5]. Når den står helt til venstre, har den verdi −5, og når den står helt til høyre har den verdi 5.

Vi kan også velge animasjonstrinn, det vil si hvor mye verdien endrer seg når vi drar i glideren. I dialogboksen over er animasjonstrinnet «0.1», det vil si at hvis glideren står helt til venstre og vi drar den mot høyre, vil verdiene bli −5,0, −4,9, −4,8, … , 5.0.

Oppgave 5:

Bruk glidere i GeoGebra til å studere hvordan forskjellige valg av n påvirker grafen til funksjonen f(x) = xn. La n variere mellom hele tall fra 0 til 10.

SkjermfilmSe film der løsningen vises
 

GeoGebra-filSe den tilhørende GeoGebra-fila
 

Oppgave 6:

I et fysikkforsøk varmer en gruppe elever opp vann til det koker, mens de måler temperaturen hvert minutt. Temperaturen stiger en stund lineært med tida, men stopper på 100 grader.

I perioden mellom 10 og 14 minutter måler de følgende:

Tid (min) 10 11 12 13 14
Temperatur (grader Celsius) 60 64 70 76 80

Legg målingene inn som punkter i GeoGebra, og bruk glidere til å anslå en funksjonsforskrift for en lineær funksjon, f(t), som kan brukes som modell for forsøket. La gliderne angi hele tall. (Du skal altså finne forskriften at + b for ei rett linje som går nærmest mulig målepunktene, der a og b er hele tall, og t er tida).

        1. Hvilken funksjonsforskrift fant du?
           
        2. Bruk funksjonsforskriften til å anslå hvilken temperatur vannet hadde da forsøket startet.
           
        3. Bruk funksjonsforskriften til å anslå hvor mye temperaturen stiger per minutt.
           
        4. Kan funksjonsforskriften brukes til å anslå hvilken temperatur vannet vil ha etter 30 minutter?

Se løsningsforslag

Kilder

    • Bueie, H: (2011) GeoGebra for lærere. Universitetsforlaget
    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget