Løsningsforslag, geometri

Trigonometri

Oppgave 1:

Det er oppgitt at i en rettvinklet trekant er hypotenusen 13 cm og den ene kateten 12 cm, og vi skal finne ut hvor lang den andre kateten er.

Kaller vi hypotenusen c og katetene a og b, sier Pytagoras’ setning at c2 = a2 + b2.

Vi regner om slik at den ene kateten blir stående alene til venstre for likhetstegnet:

a2 = b2c2

Setter vi inn, får vi a2=132 − 122 = 25. Det vil si at $a=\sqrt{25} = 5$.

Den andre kateten er 5 cm.

Tilbake til oppgaven

Oppgave 2:

I en rettvinklet trekant med navn som i figuren under, er det oppgitt at  vinkelen v = 42° og d = 10, og vi skal finne lengdene til c og e.

Rettvinklet trekant som illustrerer oppgave

Vi har at cosinus til en vinkel i en rettvinklet trekant er lik forholdet mellom hosliggende katet og hypotenusen: $\cos v = {\large \frac{c}{d}}$.

Regner vi om slik at vi får c alene på venstre side av likhetstegnet, blir det

c = d · cos v.

Vi finner cos 42° ≈ 0,74 på en kalkulator eller i GeoGebra e.l., setter inn og får

c ≈ 10 · 0,74 = 7,4.

Vi har at sinus til en vinkel i en rettvinklet trekant er lik forholdet mellom motstående katet og hypotenusen:

$\sin v = {\large \frac{e}{d}}$.

Regner vi om slik at vi får e alene på venstre side av likhetstegnet, blir det

e = d · sin v.

Vi finner sin 42° ≈ 0,67, setter inn og får

e ≈ 10 · 0,67 = 6,7

Her kunne vi også brukt Pytagoras’ setning og fått

$e^2 = d^2 – c^2 \approx 10^2 – 7{,}4^2 = 45{,}24 \Rightarrow e \approx \sqrt{45{,}24 } \approx 6{,}7$

c er om lag 7,4 cm lang og e er om lag 6,7 cm lang.

Tilbake til oppgaven

Oppgave 3:

I trekanten under vet vi at sidelengdene a = 7 og c = 9, og skal bruke trigonometri til å finne vinkelen A.

Rettvinklet trekant som illustrerer oppgave

Vi vet at sinus til en vinkel er lik motstående katet over hypotenusen, så vi får at

$\sin A = \frac{\displaystyle a}{\displaystyle c} = {\large \frac{7}{9}} \approx 0{,}78$.

A = sin-1 0,78 ≈ 51,3°.

Vi får da at A = sin-1 0,78 ≈ 51,3°.

Så skal vi kontrollere at vinkelsummen i trekanten er 180°, når vi vet at B er om lag 38,7°$.

Vi får 90° + 38,7° + 51,3°= 180°.

Tilbake til oppgaven

Oppgave 5:

Vi skal undersøk om sammenhengene

$\cos v = \sin90^ \circ – v$

$\tan v = \frac{\displaystyle \sin v}{\displaystyle \cos v}$

er riktige for vinklene 0, 30, 45, 60 og 90 grader, slik de er vist i tabellen under.

Liste over spesielle trigonometriske verdier

Vi ser at

$\cos 0^\circ = \sin(90^\circ – 0^\circ) = \sin 90^\circ = 1$

$\cos 30^\circ = \sin(90^\circ – 30^\circ) = \sin 60^\circ = {\large \frac{\sqrt 3}{2}}$

$\cos 45^\circ = \sin(90^\circ – 45^\circ) = \sin 45^\circ = {\large \frac{\sqrt 2}{2}}$

$\cos 60^\circ = \sin(90^\circ – 60^\circ) = \sin 30^\circ = {\large \frac{1}{2}}$

$\cos 90^\circ = \sin(90^\circ – 90^\circ) = \sin 0^\circ = 0$

${\large \frac{\sin 0^\circ}{\cos 0^\circ}}=  {\large \frac{0}{1}} = 0 = \tan 0^\circ$

${\large \frac{\sin 30^\circ}{\cos 30^\circ}}=  {\large \frac{\frac{1}{2}}{\frac{\sqrt 3}{2}}} =  {\large \frac{1}{\sqrt 3}} = {\large \frac{\sqrt 3}{3}} = \tan 30^\circ$

${\large \frac{\sin 45^\circ}{\cos 45^\circ}}=  {\large \frac{\frac{\sqrt 2}{2}}{\frac{\sqrt 2}{2}}} =  1= \tan 45^\circ$

${\large \frac{\sin 60^\circ}{\cos 60^\circ}}=  {\large \frac{\frac{\sqrt 3}{2}}{\frac{1}{2}}} =  \sqrt 3 = \tan 30^\circ$

${\large \frac{\sin 90^\circ}{\cos 90^\circ}}=  {\large \frac{1}{0}}$. Denne verdien er udefinert.

Alt stemmer med tabellen.

Tilbake til oppgaven

Vektorregning

Oppgave 1:

Vi har punktene G = (0, 4), L = (-2, 2), O = (2, 3) og R = (4, 4), og skal beregne koordinatene til vektorene $\vec{GL}$ og $\vec{OR}$.

Vi finner koordinatene til vektorer ved å trekke x– og y-koordinatene til startpunktet fra henholdsvis x– og y-koordinatene til sluttpunktet, så vi får

$\vec{GL} = [-2 – 0, 2 – 4] = [-2, -2]$

$\vec{OR} = [4 – 2, 4 – 3] = [2, 1]$

Tilbake til oppgaven

Oppgave 2:

Vi har vektorene $\vec{a} = [-3, 2]$, $\vec{b} = [4, 2]$ og $\vec{c} = [-1, -3]$ og skal beregne

$\vec{a} + \vec{b} + \vec{c}$.

Vi får

$\vec{a} + \vec{b} + \vec{c} = [-3 + 4 + (-1), 2 + 2 + (-3)] = [0, 1]$

Tilbake til oppgaven

Oppgave 3:

Vi skal beregne $|\vec{b}|$ når $\vec{b} = [12, 5]$.

Vi får

$|\vec{b}| = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$

Tilbake til oppgaven

Oppgave 4:

Vi har vektorene $\vec{a} = [3,1]$ og $\vec{b} = [-2,3]$ og skal beregne

$2\vec{a} + 4 \vec{b}$.

Vi får

$2\vec{a} + 4 \vec{b} = 2[3,1] + 4[-2,3] = [6,2] + [-8,12]=[-2,14]$

Tilbake til oppgaven

Oppgave 5:

 Vi skal beregne prikkproduktet til vektorene $\vec{a} = [4,2]$ og $\vec{b} = [-8,-4]$.

Vi får

$\vec{a} \cdot \vec{b} = 4 \cdot (-8) + 2 \cdot (-4) = -40$

Tilbake til oppgaven

Oppgave 6:

Vi skal beregne prikkproduktet av vektorene fra oppgave 5, $\vec{a} = [4,2]$ og $\vec{b} = [-8,-4]$ ved å benytte at vinkelen mellom vektorene er $180^\circ$.

Vi vet at

cos 180° = -1

og beregner

$|\vec{a}| = \sqrt{4^2 + 2^2} = \sqrt{20}$

og 

$|\vec{b}| = \sqrt{(-4)^2 + (-8)^2} = \sqrt{80}$

Så prikkporduktet blir

$\vec{a} \cdot \vec{b} =\sqrt{20} \cdot \sqrt{80} \cdot  (-1) = \sqrt{1600} \cdot(-1) = -40$

Som er det samme som vi fikk i oppgave 5.

Tilbake til oppgaven

Oppgave 7:

Vi skal finne vinkelen mellom vektorene $\vec{a} = [2,-1]$ og $\vec{b} = [1,3]$.

Vi har at (I)

$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y = 2\cdot 1 + (-1) \cdot 3 = -1$

Samtidig har vi at (II)

$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b} | \cos \theta = \sqrt{2^2 + (-1)^2} \cdot \sqrt{1^2 + 3^2} \cdot \cos \theta = \\
 \sqrt{5} \cdot \sqrt{10} \cdot \cos \theta = \sqrt{50} \cdot \cos \theta$

Setter vi sammen I og II, får vi

$-1 =\sqrt{50} \cos \theta\Rightarrow \cos \theta = {\large \frac{-1}{\sqrt{50}}}$

$\theta = \cos^{-1}{\Big({\large \frac{-1}{\sqrt{50}}}}\Big) \approx 98{,}13^\circ$

Dette er illustrert under.

Prikkprodukt

Tilbake til oppgaven

Oppgave 8:

Vi skal beregne projeksjonen av $\vec{a} = [-3, 2]$ på $\vec{b} = [4, 1]$.

Vi får

$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y = -3\cdot 4+ 2 \cdot 1 = -10$

og

$\vec{b} \cdot \vec{b} = b_x \cdot b_x + b_y \cdot b_y = 4 \cdot 4 + 1 \cdot 1 = 17$

$\vec{a_b} = {\large \frac{-10}{17}}[4,1] \approx[-2{,}35, -0{,}59]$

Dette er illustrert under.

Vektorprojeksjon

Tilbake til oppgaven

Polarkoordinater

Oppgave 1:

Vi skal angi punktet $(4,3)$ i polarkoordinater. Da setter vi x = 4 og y = 3 inn i $r = \sqrt{x^2 + y^2}$ og $\theta = \tan^{-1}{\large \frac{y}{x}}$ og får:

$r = \sqrt{4^2 + 3^2} = 5$

og

$\theta = \tan^{-1}{\large \frac{3}{4}} \approx 37^\circ$

Så punktet blir (5, 37°)

Tilbake til oppgaven

Oppgave 2:

Vi skal angi punktet (2, 60°) i kartesiske koordinater. Da setter vi r = 2 og θ = 60° inn i x = r · cos θ og y = r · sin θ og får:

$x = 2 \cdot \cos 60^\circ = 2 \cdot {\large \frac{1}{2}} = 1$

og

$y = 2 \cdot \sin60^\circ = 2 \cdot {\large \frac{\sqrt 3}{2}} = \sqrt3$

Så punktet blir $(1, \sqrt 3)$

Tilbake til oppgaven