Løsningsforslag, grunnleggende sannsynlighet

Introduksjon til sannsynlighet

Oppgave 1:

En kollega vil vedde på at det blant de første 20 bilene som passerer er minst to som har samme to sluttsifre i registreringsnummeret. Bør du vedde imot?

Nei, du vil sannsynligvis tape. Det er om lag 87 % sannsynlighet for at minst to av 20 vilkårlige registreringsnumre slutter på samme to sifre.

Tenk deg at en vegg er delt i 100 like store ruter, at du skal kaste en ball tjue ganger mot veggen i blinde, og at det er helt tilfeldig hvor du treffer. Sannsynligheten for ikke å treffe samme rute to eller flere ganger er da den samme som for at ingen av 20 biler har samme sluttsifre.

De første kastene går nok greit. Men når du kommer til kast 16, er det 15 ruter du ikke må treffe. Så er det 16, neste gang 17, så 18, og til slutt 19. Selv om det i hvert kast er mest sannsynlig å treffe en ny rute, er det ikke så sannsynlig at du klarer det i kast etter kast etter kast.

Tilbake til oppgaven

Oppgave 2:

I Monty Halls gameshow vinner du en bil hvis du velger den riktige av tre dører. Når du har valgt dør, åpner Monty en av de to andre, der det ikke er noe bak. Du vet nå at bilen enten er bak den ene døren du har valgt, eller bak den tredje, som ennå er lukket. Er det noen vits i å bytte dør, sannsynlighetene er vel 50-50?

Ja, du bør bytte! Sjansene er ikke 50-50, men ca. 33-66. Ved å bytte dobler du vinnersannsynlighetene.

Idet du velger, er det en tredels sannsynlighet for at bilen er bak døra du har valgt, og to tredels sannsynlighet for at den er bak en av de to andre. Når Monty åpner en dør uten noe bak, betyr det at det er to tredels sannsynlighet for at bilen er bak den lukkede døra du ikke har valgt.

Vanskelig å forstå? La oss gjøre problemstillingen mer ekstrem, av og til kan det å gjøre noe veldig stort eller veldig lite gjøre ting mer intuitive.

Tenk deg at det er 1000 dører med en bil bak en av dem. Du velger 1, så åpner Monty 998 der det ikke er noe. Vil du fremdeles ikke bytte til den ene døra som er igjen? Selvfølgelig vil du det. Ved å bytte øker du vinnersannsynlighetene fra 0,1 % til 99,9 %.

Tilbake til oppgaven

Oppgave 3:

Du tester positivt på en dødelig sykdom som har rammet hver titusende innbygger. Testen er 99 % sikker, så du regner med at du sannsynligvis stryker med hvis du ikke betaler en formue for behandling. Men hvor sannsynlig er det at du faktisk er syk?

Det er om lag 1 % sannsynlighet for at du faktisk er syk. Hvis du trodde at sannsynligheten for at du var syk var kjempestor, lot du deg lure av paradokset med de falske positive.

At testen er 99 % sikker betyr at den i 1 % av tilfellene ikke klarer å påvise at en syk person faktisk er syk, men også at den i 1 % av tilfellene påviser sykdom hos en person som faktisk er frisk. Og siden det finnes så mange flere friske enn syke, er det flest friske som blir feildiagnostisert.

La oss si at vi tester 1 000 000 personer. Siden hver titusende i gjennomsnitt er syk, kan vi blant disse forvente å finne 100 syke og 999 900 friske. Av de syke vil i snitt 99 %, altså 99 teste positivt. Av de friske vil i snitt 1 %, altså 9999 teste positivt. Totalt er det altså 9999 + 99 = 10 098 positive tester. Av disse er ${\large \frac{99}{10 \, 098}} \approx 0{,}0098$, altså ca. 1 %, fra personer som faktisk er syke.

Tilbake til oppgaven

Begreper i sannsynlighet

Oppgave 1:

Vi skal bestemme hva som er utfallsrommet, og hvilke enkeltutfall vi kan få når vi kaster tre mynter og teller opp antall kron.

Vi kan få ingen, én, to eller tre kron, så utfallsrommet er {0, 1, 2, 3}.

Kaller vi kron for K og mynt for M, blir enkeltutfallene
{M-M-M, M-M-K, M-K-M, M-K-K, K-M-M, K-M-K, K-K-M, K-K-K}.

Det er altså 8 mulige enkeltutfall. Det gir mening, for det finnes 2 muligheter for hver av 3 mynter, altså 23 = 8 kombinasjonsmuligheter.

Tilbake til oppgaven

Oppgave 2:

På et terningkast skal vi beregne sannsynligheten for å få

    • 5 eller 6
      Dette er to av i alt seks like sannsynlige muligheter som ikke kan inntreffe samtidig, så sannsynligheten blir $P(\{5, 6\}) = {\large \frac{2}{6}} = {\large \frac{1}{3}}$.
       
    • Ikke 5 eller 6
      Dette tilsvarer å få 1, 2, 3 eller 4. Samme argument som i punkt 1 gir at sannsynligheten blir $P(\{1, 2, 3, 4\}) = {\large \frac{4}{6}} = {\large \frac{2}{3}}$.
      Vi kan imidlertid også benytte oss av at summen av sannsynlighetene skal bli 1, slik at sannsynligheten for ikke å 5 eller 6 er $1 − P(\{5, 6\}) = 1 − {\large \frac{1}{3}} = {\large \frac{2}{3}}$.

Tilbake til oppgaven

Oppgave 3:

Vi skal beregne sannsynlighetene for å få henholdsvis 0, 1, 2 og 3 kron ved kast med 3 mynter.

Vi har i alt 8 enkeltutfall:
{M-M-M, M-M-K, M-K-M, M-K-K, K-M-M-, K-M-K, K-K-M, K-K-K}.

Vi ser at 1 av disse gir null kron, 3 gir én kron, 3 gir to kron, og 1 gir tre kron. Så sannsynlighetene blir

$P(0) = P(3) = {\large \frac{1}{8}}$.

$P(1) = P(2) = {\large \frac{3}{8}}$.

Vi ser at vi har en symmetrisk fordeling sentrert rundt én og to kron.

Tilbake til oppgaven

Oppgave 4:

    1. Vi skal beregne sannsynligheten for at en familie med to barn har ett barn av hvert kjønn, når vi antar at gutt og jente er like sannsynlig.
      Vi har fire, like sannsynlige enkeltutfall som ikke kan inntreffe samtidig: {G-G, G-J, J-G, J-J}.
      To av disse gir ett av hvert kjønn, så ut fra «gunstige på mulige» får vi at
      $P(\text{«ett av hvert»}) = {\large \frac{2}{4}} = {\large \frac{1}{2}}$.
       
    2. Vi skal svare på hvorfor mange svarer feil på spørsmålet over, og hva de svarer.
      Mange tenker på dette som en uniform modell, der kombinasjonene «to gutter», «ett av hvert» og «to jenter» er like sannsynlig, og tror derfor at det er en tredjedels sannsynlighet for ett av hvert kjønn. Men modellen er ikke uniform, de forskjellige mulighetene har ulik sannsynlighet.

Tilbake til oppgaven

Mengder

Oppgave 1:

Med utgangspunkt i mengdene A = {a, b, c, d, e}, K = {b, c, d} og V = {a, i} skal vi beregne mengder ut fra unioner og snitt. Vi skal også angi mengdens kardinalitet, noe som vil si antall elementer i mengdene.

    1. A ∪ V
      Dette er mengden av elementer som finnes i A eller V eller begge:
      A ∪ V = {a, b, c, d, e, i}.
      n(A ∪ V) = 6.
       
    2. AK
      Dette er mengden av elementer som finnes i A eller K eller begge:
      A ∪ K = {a, b, c, d, e}.
      n(A ∪ K) = 5.
       
    3. K ∪ V
      Dette er mengden av elementer som finnes i K eller V eller begge:
      K ∪ V = {a, b, c, d, i}.
      n(K ∪ V) = 5.
       
    4. A ∩ V 
      Dette er mengden av elementer som finnes i både A og VA ∩ V = {a}.
      n(A ∩ V) = 1.
       
    5. A ∩ K
      Dette er mengden av elementer som finnes i både A og K:
      A ∩ K= {b, c, d}.
      n(A ∩ K) = 3.
       
    6. KV
      Dette er mengden av elementer som finnes i både K og V:
      K ∩ = ∅
      n(K ∩ V) = 0.
      K og V har ingen felles elementer, de er disjunkte.

​Tilbake til oppgaven