Minste felles multiplum

Minste felles multiplum til to heltall, a og b, er det minste positive heltallet som er delelig med både a og b. På dette nettstedet skriver vi minste felles multiplum til a og b som MFM(a, b). Andre steder vil vi imidlertid kunne støte på betegnelsen LCM, for «Least Common Multiple», eller at a og b bare listes mellom klammeparenteser, som [a, b].

Et spesialtilfelle som avviker litt fra definisjonen, er MFM(a, 0) = 0. Dette gjelder for alle hele tall, a, og følgelig er også MFM(0, 0) = 0.

Siden MFM er definert som positivt, vil MFM(a, b) være uavhengig av fortegnet til a og b. Vi bruker derfor bare positive a og b i eksempler og oppgaver med MFM.

På ei tallinje kan vi illustrere minste felles multiplum til to tall, a og b, ved å legge et linjestykke med lengde a etter seg selv, og et linjestykke med lengde b etter seg selv. MFM(a, b) vil da være det første tallet begge linjestykkene treffer i.

Eksempel 1:

MFM(4, 6) = 12, fordi 12 er det minste tallet som er delelig på både 4 og 6.

Dette er illustrert under, der det første tallet linjestykkene med lengde 4 og 6 begge treffer i, er 12.

Illustrasjon av at SFF(4, 6) = 12

Begge linjene vil videre treffe i alle multipler av 12.

Minste felles multiplum får vi blant annet bruk for når vi skal finne fellesnevner for brøker, slik det er beskrevet i algebra-artikkelen om brøkregning.

Finne minste felles multiplum

Kombinere primtallsfaktorer

Vi kan finne minste felles multiplum til to tall, a og b, ved først å primtallsfaktorisere tallene, så stryke like mange forekomster av faktorene i tall b som det antall ganger de forekommer i tall a, og til slutt multiplisere de gjenstående faktorene i begge tall.

Eksempel 2:

Vi skal finne MFM(4, 6). Vi har at 4 = 2 · 2 og 6 = 2 · 3. Vi ser at faktor 2 i b = 6 forekommer én gang i a = 4, og kan strykes, så vi får MFM(4, 6) = 2 · 2 · 2 · 3 = 12, som er det samme som vi fant i eksempel 1.

Eksempel 3:

Vi skal finne MFM(60, 24). Vi har at 60 = 2 · 2 · 3 · 5 og 24 = 2 · 2 · 2 · 3. Vi ser at faktor 2 i b = 24 forekommer to ganger i a = 60, og kan strykes to ganger. Faktor 3 i b = 24 forekommer én gang i a = 60, og kan strykes én gang. Så MFM(60, 24) = 2 · 2 · 3 · 5 · 2 · 2 · 2 · 3 = 120.

En annen måte å gjøre det samme på er å skrive tallene som potenser av primtallsfaktorene, slik det er beskrevet i artikkelen om primtall, og så multiplisere de høyeste potensene av hver faktor. Vi illustrerer med tallene fra eksempel 3:

Eksempel 4:

Vi skal finne MFM(60, 24). Vi har at 60 = 22 · 31 · 51 og 24 = 23 · 31. Vi ser at høyeste potens av 2 er 3, og høyeste potens av både 3 og 5 er 1. Så MFM(60, 24) = 23 · 31· 51 = 120.

Når vi skal addere brøker med ulik nevner, utvider vi brøkene med nevnernes minste felles multiplum.

Eksempel 5:

 Vi skal beregne ${\large \frac{1}{60}} + {\large \frac{1}{24}}$. Fra eksempel 4 vet vi at MFM(60, 24) = 120. Vi må altså utvide brøkene ved å multiplisere med 120 i teller og nevner:

${\large \frac{1}{60}} + {\large \frac{1}{24}} = {\large \frac{1}{60}} \cdot {\large \frac{120}{120}} + {\large \frac{1}{24}} \cdot {\large \frac{120}{120}}= {\large \frac{\Large \frac{120}{60}}{120}} + {\large \frac{\Large \frac{120}{24}}{120}} = {\large \frac{2}{120}} + {\large \frac{5}{120}} = {\large \frac{7}{120}}$

Oppgave 1:

Vi vet at 63 = 3 · 3 · 7 og at 135 = 3 · 3 · 3 · 5.

Bruk dette til å finne MFM(63, 135), og benytt resultatet til å regne ut $ {\large \frac{1}{63}} + {\large \frac{1}{135}}$.

Se løsningsforslag

Dersom to tall, a og b, er innbyrdes primiske, inneholder ikke b noen faktorer som også finnes i a, så det er ingenting å stryke. Alle faktorene blir med i multiplikasjonen, så da har vi at MFM(a, b) = a · b.

Eksempel 6:

Vi skal finne MFM(20, 21). Vi har at 20 = 2 · 2 · 5 og 21 = 3 · 7. Vi ser at ingen faktorer i b = 21 forekommer i a = 20, så ingenting kan strykes. Vi får at MFM(20, 21) = 2 · 2 · 5 · 3 · 7 = 420. Som er det samme som 20 · 21.

Alternativt: 20 = 22 · 51 og 21 = 31 · 71. Multipliserer vi høyeste potens av alle faktorene, får vi 22 · 31 · 51 · 71 = 420.

Bruke SFF

Som vi nevner i avsnittet om å finne største felles faktor, kan sammenlikning av to talls primtallsfaktorer bli en uoverkommelig oppgave for store tall. Heldigvis finnes det en måte å finne MFM på som ikke krever faktorisering, men baserer seg på største felles faktor:

$\fbox{$MFM(a, b) = \frac{\displaystyle a \cdot b}{\displaystyle SFF(a, b)}$}$

Siden vi har en effektiv måte å finne SFF på, nemlig Euklids algoritme, har vi derved også en effektiv måte å finne MFM på.

Prinsippet i denne metoden å finne MFM på er egentlig den samme som ved primtallsfaktorisering, bare at vi ved den metoden sløyfer de felles faktorene før vi multipliserer ut, her dividerer vi dem bort etterpå.

Eksempel 7:

Vi skal finne MFM(252, 198).

I eksempel 12 i artikkelen om største felles faktor fant vi at SFF(252, 198) = 18. Så vi får $MFM(252, 198) = \frac{\displaystyle 252 \cdot 198}{\displaystyle 18} = 2772$.

Dette nettstedet har en app som finner MFM på denne måten.

Oppgave 2:

Benytt at SFF(3528, 9450) = 126 til å finne MFM(3528, 9450). Regn for hånd, og bruk deretter appen som finner MFM til å sjekke at du har regnet riktig.

Se løsningsforslag

Vi kan finne MFM til mer enn to tall ved å finne MFM til to tall av gangen, på samme måte som vi finner SFF til mer enn to tall.

Eksempel 8:

MFM(12, 18, 30) = MFM(12, MFM(18, 30)) = MFM(12, 90) = 180.

Eller

MFM(12, 18, 30) = MFM(MFM(12, 18), 30) = MFM(36, 30) = 180.

Bruke GeoGebra og regneark

I GeoGebra kan vi beregne MFM ved hjelp av funksjonen mfm eller lcm. Skriver vi for eksempel mfm(252, 198) eller lcm(252, 198) i inntastingsfeltet, svarer GeoGebra med 2772 i algebrafeltet, det samme som vi fant i eksempel 7. Vil vi finne MFM til mer enn to tall samtidig i GeoGebra, må vi angi tallene som ei liste, det vil si mellom krøllparenteser, atskilt med komma. Vil vi for eksempel finne MFM(4, 6, 10), skriver vi mfm({4, 6, 10}) eller lcm({4, 6, 10}) i inntastingsfeltet.

I regneark som Excel kan vi finne minste felles multiplum for et vilkårlig antall positive heltall med funksjonen mfm. Vil vi for eksempel finne MFM(4, 6, 10), skriver vi =mfm(4; 6; 10).

Selv om minste felles multiplum er definert for negative tall, gir imidlertid Excel feilmelding hvis vi prøver å bruke mfm på negative tall. Det problemet kan vi omgå ved å ta absoluttverdien til negative tall ved hjelp av funksjonen abs. Skal vi for eksempel beregne MFM(−18, 30), skriver vi =mfm(abs(-18); 30).

GeoGebra kan imidlertid finne MFM til negative tall. Skal vi for eksempel beregne MFM(−18, 30), skriver vi mfm(−18, 30) eller lcm(−18, 30) i inntastingsfeltet.

Kilder

    • Rosen, Kenneth H. (1984). Elementary Number Theory and Its Applications. Addison-Wesley.
    • Breiteig, T. (2007). Bak tallene. Innføring i tallteori. Kompendium, Universitetet i Agder.
    • Rinvold, R. (2009). Tallteori. Caspar forlag.
    • Gustavsen, TS, Hinna, K.R.C., Borge, I.C., Andersen P.S. (2014). QED 5-10, bind 2. Høyskoleforlaget