Ordnede og uordnede utvalg

I artikkelen om permutasjoner studerte vi hvilke kombinasjonsmuligheter vi har når vi setter elementer sammen i en bestemt rekkefølge. For eksempel kan vi, når vi velger to av tallene 1, 2 og 3, danne kombinasjonene 1-2, 1-3, 2-1, 2-3, 3-1 og 3-2. Disse kombinasjonene kalles ordnede utvalg fordi rekkefølgen elementene står i, er viktig. Men ser vi bort fra rekkefølgen, vil henholdsvis 1-2 og 2-1, 1-3 og 3-1, og 2-3 og 3-2 representere samme utvalg. Disse kalles uordnede utvalg fordi rekkefølgen elementene står er uten betydning. De mulige uordnede utvalgene består av kombinasjonene {1, 2}, {1, 3}, og {2, 3}.

Vi har tidligere introdusert en formel for å beregne antall k-permutasjoner av totalt n elementer. Dette er egentlig det samme som antall ordnede utvalg:

$\fbox{Antall ordnede utvalg med $k$ elementer av totalt $n$: $\frac{\displaystyle n!}{\displaystyle (n − k)!}$}$

Siden k elementer kan organiseres på k! måter, betyr det at vi finner antall uordnede utvalg ved å dividere dette antallet på k!:

$\fbox{Antall uordnede utvalg med $k$ elementer av totalt $n$: $\frac{\displaystyle n!}{\displaystyle k!(n − k)!}$}$

Eksempel 1:

I pengespillet Lotto dannes en vinnerrekke ved at det trekkes 7 av totalt 34 tall.

Antall måter en sekvens på 7 tall av totalt 34 kan trekkes på, er det samme som antall ordnede utvalg med 7 av 34 elementer:

${\large \frac{34!}{(34 − 7)!}} = 27 \, 113 \, 264 \, 460$.

Men når trekningen er foretatt, ordnes tallene i stigende rekkefølge, så rekkefølgen tallene trekkes i, har ingen betydning. For eksempel gir både 12-28-17-7-6-2-31 og 7-17-2-6-12-31-28 vinnerrekka 2-6-7-12-17-28-31.

For å finne antall mulige vinnerrekker, må vi altså dividere med antall måter 7 tall kan organiseres på, nemlig 7!, og beregne antall mulige uordnede utvalg:

${\large \frac{34!}{7!(34 − 7)!}} = 5 \, 379 \, 616$.

Det finnes altså ca. 5,38 millioner mulige vinnerrekker.

Det finnes en egen skrivemåte for å uttrykke «antall uordnede utvalg med k av totalt n elementer», ${\large \binom{n}{k}}$, som leses «n over k». Altså

$\fbox{${\large \binom{n}{k}} = \frac{\displaystyle n!}{\displaystyle k!(n − k)!}$}$

Vi kaller også gjerne dette «antall kombinasjoner med k av n elementer».

Excel har en egen funksjon, kombinasjon, til å beregne antall kombinasjoner, der kombinasjon(n, k) gir antall kombinasjoner med k av n elementer. Vi skriver for eksempel =kombinasjon(34; 7) for å gjøre beregningen i eksempel 8. Tilsvarende funksjon i GeoGebra heter nCr(n, k) Vi skriver for eksempel nCr(34, 7) i inntastingsfeltet eller CAS for å gjøre beregningen i eksempel 1.

Eksempel 2:

Vi skal regne ut hvor mange forskjellige pokerhender det finnes. En pokerhånd består av 5 av totalt 52 kort, så det vi må beregne er hvor mange kombinasjoner, altså antall uordnede utvalg, det finnes med 5 av 52 elementer. Vi får

${\large \binom{52}{5}} = {\large \frac{52!}{5!(52 − 5)!}} = 2 \, 598\, 960$, som er det samme tallet vi brukte da vi i introduksjonen regnet på sannsynlighet for å få tress utdelt i poker.

Vi kan kontrollere svaret i Excel ved å skrive =kombinasjon(52; 5) og i GeoGebra ved å skrive nCr(52, 5).

Oppgave 1:

I en bedrift med 25 ansatte skal det velges 3 representanter til en delegasjon. Beregn hvor mange forskjellige delegasjoner som kan velges. Bruk formel, og kontroller svaret i Excel eller GeoGebra.

Se løsningsforslag

Kilder

    • Hinna, K.R.C., Rinvold, R.A., Gustavsen, TS. (2011). QED 5-10, bind 1. Høyskoleforlaget
    • Hagen, Per C. (2000). Innføring i sannsynlighetsregning og statistikk. Cappelen akademisk
    • Birkeland, P.A., Breiteig, B., Venheim, R. (2012). Matematikk for lærere 2. Universitetsforlaget