Trigonometri

Ordet trigonometri kommer av det greske trigonon, som betyr tre vinkler, og metro, som betyr måling. Trigonometri brukes i sammenheng med beregning av sider og vinkler i trekanter.

I funksjonsartikkelen om trigonometriske funksjoner ble vi kjent med funksjonene sinus, cosinus og tangens. Nå skal vi se hvordan disse kan benyttes til å bestemme trekanter, det vil si å finne størrelsene på alle vinklene og lengden av alle sidene i trekanten.

Trigonometri i rettvinklede trekanter

I en rettvinklet trekant er en av vinklene er 90°. Sidene som ligger inntil til den rette vinkelen kalles kateter, mens den motstående siden kalles hypotenusen. Dette er illustrert i figuren under.

Illustrasjon av kateter og hypotenus i rettvinklet trekant

Pytagoras′ setning

Pytagoras′ setning er oppkalt etter den greske matematikeren Pytagoras. Setningen angir en sammenheng mellom sidelengdene i en rettvinklet trekant, og sier at summen av kvadratene av katetene er lik kvadratet av hypotenusen. Kaller vi sidene a, b og c som på figuren over, har vi altså at

a2 + b2 = c2

Det finnes en mengde forskjellige typer bevis for Pytagoras setning. Se for eksempel NDLAs nettside og denne demonstrasjonen med vanntanker fra Vitensenteret i Arendal.

Oppgave 1:

I en rettvinklet trekant er hypotenusen 13 cm og den ene kateten 12 cm. Hvor lang er den andre kateten?

Se løsningsforslag

Trigonometriske funksjoner

Pytagoras′ setning gir oss hjelp til å finne lengden av den tredje siden i en rettvinklet trekant når to av de andre er kjent. Men den gir ingen hjelp med å finne vinklene. Til det trenger vi de trigonometriske funksjonene, som vi kaller sinus, cosinus og tangens. Dette er funksjoner i ordets egentlige forstand, og vi studerer dem i funksjonsartikkelen om trigonometriske funksjoner, men her nøyer vi oss med å si at de kan brukes til å uttrykke forholdstall i trekanter. Fordi funksjonsverdiene kan finnes med en kalkulator eller i et dataprogram som Excel eller GeoGebra, har vi derved et redskap til å beregne størrelsen på en trekants vinkler.

De to vinklene i en rettvinklet trekant som ikke er 90°, vil ligge mellom en katet og hypotenusen. Kateten som ligger inntil vinkelen, kalles hosliggende katet, den andre kalles motstående katet. Dette er illustrert for vinkelen v i figuren under.

Illustrasjon av hosliggende og motstående katet i rettvinklet trekant

Det er da slik at 

  • sinus til en vinkel er lik lengden av motstående katet dividert med lengden av hypotenusen.
  • cosinus til en vinkel er lik lengden av hosliggende katet dividert med lengden av hypotenusen.
  • tangens til en vinkel er lik lengden av motstående katet dividert med lengden av hosliggende katet.

Vi forkorter gjerne funksjonsnavnene til sin, cos og tan. Med referanse til figuren over har vi altså at

$\fbox{$\begin{align} \sin v &= \frac{\displaystyle b}{\displaystyle c} \\
&\, \\
\cos v &= \frac{\displaystyle a}{\displaystyle c} \\
&\, \\
\tan v &= \frac{\displaystyle b}{\displaystyle a} \end{align}$}$

Kjenner vi størrelsen til en vinkel i en rettvinklet trekant og lengden til en av sidene, kan vi ved hjelp av disse formlene beregne lengdene til de to andre sidene. Sinus, cosinus og tangens til en vinkel finner vi ved hjelp av en kalkulator eller et dataprogram som Excel eller GeoGebra.

Eksempel 1:

I en rettvinklet trekant med navn som i figuren over, har vi at vinkelen v = 50°, at sidelengden a=7, og vi skal bruke trigonometriske funksjoner til å finne sidelengdene b og c.

Fra lista med formler ser vi at $\tan v =  \frac{\displaystyle b}{\displaystyle a}$, altså er b = a · tan v.

Vi setter inn de oppgitte verdiene og får

b = 7 · tan 50° ≈ 7 · 1,19 ≈ 8,33.

Fra lista med formler ser vi at $\cos v = \frac{\displaystyle a}{\displaystyle c}$, altså er $c = \frac{\displaystyle a}{\displaystyle \cos v}$.

Vi setter inn de oppgitte verdiene og får

$c = {\large \frac{7}{\cos 50^\circ}} \approx {\large \frac{7}{0{,}64}} \approx 10{,}89$.

Her brukte vi en kalkulator til å finne tan 50° ≈ 1,19 og cos 50° ≈ 0,64.

I eksempel 1 kunne vi også brukt formelen $\sin v = \frac{\displaystyle b}{\displaystyle c}$ til å beregne c, for vi hadde jo allerede beregnet b. Imidlertid inneholder b en avrundingsunøyaktighet, mens a er oppgitt til å være akkurat 7. Derfor er det et bedre valg å bruke at $\cos v = \frac{\displaystyle a}{\displaystyle c}$, slik vi har gjort. Når vi har flere alternative utregningsmetoder, vil det ofte være et godt valg å bruke den som gir minst unøyaktighet.

I eksempel 1 kunne vi naturligvis også beregnet c ved hjelp av Pytagoras′ setning:

c2 = a2 + b2 ≈ 72 + 8,332 ≈ 118,39 ⇒ c ≈ 10,88.

Som er det samme vi fant i eksempel 1, med unntak av en avrundingsunøyaktighet.

Windows har en kalkulator vi kan få fram ved å skrive «Kalkulator i Windows-menyen. Velger vi så «Vitenskapelig» i menyen øverst til venstre på kalkulatoren, ser den ut som vist under. Her har vi markert knappene for de trigonometriske funksjonene, og knappen «DEG», som brukes til å skifte mellom «DEG» = grader, «RAD» = radianer og «GRAD» = gradianer, altså på hvilket format vinkelmålet oppgis.

Illustrasjon av trigonometriske funksjoner i Windows-kalkulator

Navngivingen i en trekant kan være vilkårlig. Vi bør derfor huske at sinus er motstående katet over hypotenus, cosinus er hosliggende katet over hypotenus og tangens er motstående katet over hosliggende katet, i stedet for å pugge formlene med a, b og c.

Oppgave 2:

I en rettvinklet trekant med navn som i figuren under har vi at vinkelen v = 42° og d = 10. Finn lengdene til c og e.

Rettvinklet trekant som illustrerer oppgave

Se løsningsforslag

Inverse trigonometriske funksjoner

Vi har så langt sett hvordan vi kan beregne lengden til sidene i en rettvinklet trekant basert på størrelsen til vinkler, men vi kan også beregne vinkler basert på lengden til sidene. Har vi for eksempel formelen $\tan v = \frac{\displaystyle b}{\displaystyle a}$ og vet at b = 3 og a = 6, følger det at $\tan v = {\large \frac{3}{6}} = 0{,}5$. Nå kjenner vi ikke vinkelen og skal finne tangens, men kjenner tangens og skal finne vinkelen.

I slike tilfeller bruker vi inverse funksjoner, også kalt omvendte funksjoner. Det finnes inverse funksjoner for både sinus, cosinus og tangens, de heter asin, acos og atan alternativt arcsin, arccos og arctan. De skrives ofte også som sin−1, cos−1 og tan−1. På bildet av Windows-kalkulatoren under har vi aktivert disse funksjonene ved å trykke på pil-opp, slik det er markert.

Illustrasjon av inverse trigonometriske funksjoner i Windows-kalkulator

Har vi for eksempel at tangens er 0,5, som nevnt over, bruker vi den inverse tangensfunksjonen, og finner at tan−1 0,5 ≈ 26,6°. Den tilhørende vinkelen er altså 26,6°.

Eksempel 2:

I trekanten under er det oppgitt at sidelengdene a = 7 og c = 9 og vi skal finne vinkelen B.

Rettvinklet trekant som illustrerer eksempel

Vi vet at cosinus til en vinkel er lik hosliggende katet over hypotenusen, så vi får at

$\cos B = \frac{\displaystyle a}{\displaystyle c} = {\large \frac{7}{9}} \approx 0{,}78$.

Vi får da at

B = cos−1 0,78 ≈ 38,7°.

Oppgave 3:

I trekanten i eksempel 2 vet vi at sidelengdene a = 7 og c = 9. Bruk trigonometri til å finne vinkelen A. Kontroller at vinkelsummen i trekanten blir 180°, når du fra eksempel 2 vet at vinkelen B er om lag 38,7°.

Se løsningsforslag

Trigonometri i vilkårlige trekanter

Vi har i forrige avsnitt sett hvordan vi kan beregne vinkler og sidelengder i rettvinklede trekanter. Nå skal vi se på noen regler som gjelder i vilkårlige trekanter, slik som den under.

Eksempel på vilkårlig trekant

Arealsetningen

Arealsetningen sier at arealet av en vilkårlig trekant er halve produktet av lengden til 2 sider og sinus til vinkelen mellom dem.

Med referanse til trekanten over får vi

$\fbox{$\text{Areal} = {\large \frac{1}{2}} a b \sin C = {\large \frac{1}{2}} b c \sin A = {\large \frac{1}{2}} a c \sin B$}$

Eksempel 3:

I trekanten over er sidelengden a = 9, sidelengden c = 9,8, vinkelen B = 30°, og vi skal beregne arealet. Arealsetningen gir

$\text{Areal} = {\large \frac{1}{2}} a c \sin B =  {\large \frac{1}{2}} \cdot 9 \cdot 9{,}8 \cdot \sin 30^\circ =  {\large \frac{1}{2}} \cdot 9 \cdot 9{,}8 \cdot 0{,}5 = 22{,}05$

Sinus til en rett vinkel er 1. Hvis for eksempel vinkelen C er rett, får vi fra formelen over at

$\text{Areal} = {\large \frac{1}{2}} a b \cdot 1 ={\large \frac{1}{2}} a b$

Noe som vi kjenner igjen som formelen for å beregne arealet av en rettvinklet trekant med kateter a og b. Denne formelen er altså et spesialtilfelle av arealsetningen.

Sinussetningen

Sinussetningen sier at i en vilkårlig trekant er forholdet mellom sinus til en vinkel og lengden til den motstående siden i en trekant den samme for alle de tre vinklene og sidene. Med trekanten over som eksempel har vi altså at

$\fbox{$\frac{\displaystyle \sin A}{\displaystyle a} =\frac{\displaystyle \sin B}{\displaystyle b} =\large \frac{\displaystyle \sin C}{\displaystyle c}$}$

Eksempel 4:

I trekanten over er sidelengden a = 9, sidelengden c = 9,8, vinkelen A = 66°, og vi skal beregne vinkelen C. Sinussetningen gir

$ \frac{\displaystyle \sin C}{\displaystyle c} = \frac{\displaystyle \sin A}{\displaystyle a} \Rightarrow \sin C = \frac{\displaystyle c \cdot\sin A}{\displaystyle a} =  {\large \frac{9,8 \cdot\sin 66^\circ}{9}} \approx 0{,995}$

C = sin−1 0,995 ≈ 84°.

Vi ser at dette er riktig, fordi vinkelsummen i en trekant skal være 180°, og

A + B + C = 66° + 30° + 84° = 180°.

Cosinussetningen

Cosinussetningen sier at i en vilkårlig trekant er kvadratet av en sidelengde lik summen av kvadratene av de andre to sidelengdene minus to ganger produktet av de to sidelengdene og cosinus til vinkelen mellom dem.

Med referanse til trekanten over, får vi at

$\fbox{$\begin{align} &a^2 = b^2 + c^2 − 2bc \cos A \\
&\\
&b^2 = a^2 + c^2 − 2ac \cos B \\
&\\
&c^2 = a^2 + b^2 − 2ab \cos C \end{align}$}$

Eksempel 5:

I trekanten over er sidelengden a = 9, sidelengden c = 9,8, vinkelen B = 30°, og vi skal beregne sidelengden b. Cosinussetningen gir

b2 = a2 + c2 − 2ac cos B = 92 + 9,82 − 2 · 9 · 9,8 · cos 30° ≈ 24,273.

$b \approx \sqrt{24,273} \approx 4{,}9$.

Oppgave 4:

I trekanten under er det gitt to sidelengder, a = 7 og c = 9, samt en vinkel, B = 40°. Beregn

  1. Sidelengden b.
     
  2. Vinklene A og C.
     
  3. Trekantens areal.

Eksempel på vilkårlig trekant

SkjermfilmSe film med løsningsforslag 
 (Her brukes en eldre utgave av Windows-kalkulatoren)

Cosinussetningen kalles også «den utvidede pytagoreiske setning». For hvis for eksempel vinkelen C er rett, er cos C = 0, og formelen blir redusert til den vanlige pytagoreiske setningen:

c2 = a2 + b2 − 2ab · cos C = a2 + b2 − 2ab · 0 = a2 + b2

Trigonometriske sammenhenger

Verdiene til de trigonometriske funksjonene kan ofte bare uttrykkes som desimaltall, men for vinkler på 0, 30, 45, 60 og 90 grader blir verdiene hele tall, eller kan uttrykkes som røtter av hele tall, som vist i tabellen under:

Liste over spesielle trigonometriske verdier

I en rettvinklet trekant som vist under, kaller vi vinklene ved hypotenusen for v og v′:

Eksempel på vinkler i en rettvinklet trekant

Siden vinkelsummen i en trekant er 180°, og 90° går bort i den rette vinkelen, må vi ha v′ = 90° − v.

Ved å bruke reglene for trigonometriske funksjoner i trekanter, ser vi at vi har:

$\begin{align} \sin v &= \frac{\displaystyle b}{\displaystyle c} \\
\cos v &= \frac{\displaystyle a}{\displaystyle c} \\
\sin v′ &= \frac{\displaystyle a}{\displaystyle c} \\
\cos v′ &= \frac{\displaystyle b}{\displaystyle c} \end{align}$

Sinus til v er altså lik cosinus til v′ og omvendt. Og siden v′ = 90° − v, ser vi at vi har

$\fbox{$\cos v = \sin(90^ \circ − v)$}$

$\fbox{$\sin v = \cos (90^ \circ − v)$}$

Disse sammenhengene gjelder for alle vinkler.

I trekanten over har vi også at

$\tan v = \frac{\displaystyle b}{\displaystyle a}$

Og ved å skrive om formlene for sinus og cosinus over, har vi at

b = c sin v

a = c cos v

Vi har altså at $\tan v = \frac{\displaystyle b}{\displaystyle a} = \frac{\displaystyle c \cdot \sin v}{\displaystyle c \cdot \cos v} = \frac{\displaystyle \sin v}{\displaystyle \cos v}$.

Tangens er lik sinus dividert på cosinus. Denne sammenhengen gjelder for alle vinkler.

$\fbox{$\tan v = \frac{\displaystyle \sin v}{\displaystyle \cos v}$}$

Oppgave 5:

Undersøk om sammenhengene

$\cos v = \sin(90^ \circ − v)$

$\tan v = \frac{\displaystyle \sin v}{\displaystyle \cos v}$

er riktige for vinklene 0, 30, 45, 60 og 90 grader, slik de er vist i tabellen lenger opp.

Se løsningsforslag

Kilder

    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget

Trigonometriske funksjoner

Periodiske funksjoner

I naturen møter vi mange periodiske fenomener. Periodiske fenomener er noe som gjentar seg i et fast mønster over tid. For eksempel solas høyde over horisonten, som varierer med tidspunkt på dagen, og med årstiden. Noen fenomener er lette å beskrive matematisk, andre er mer kompliserte. Grafene under viser lyd fra en tonegenerator, det vil si endringer i lufttrykk som funksjon av tiden. Grafen til venstre representerer en mer høyfrekvent tone enn den til høyre.

Kurveform for en høyfrekvent tone Kurveform for en lavfrekvent tone

 

I andre artikler har vi arbeidet med polynomfunksjoner, potensfunksjoner og rasjonale funksjoner, men ingen av de grafene vi har produsert hittil har liknet på disse kurvene. Og det lar seg ikke gjøre å modellere et fenomen som lyd eller noe annet periodisk fenomen ved hjelp av noen av disse. Vi trenger en ny type funksjoner som kalles trigonometriske funksjoner. De heter sinus, cosinus og tangens, og skrives vanligvis forkortet som sin, cos og tan.

Kurvene over lar seg lett beskrive ved hjelp av trigonometriske funksjoner, begge er på formen f(x) = sin ax, der a er en konstant. Stor a gir kjappe svingninger, som i kurven til venstre, liten a gir langsomme svingninger, som i kurven til høyre.

De trigonometriske funksjonene er periodiske, det vil si at de gjentar seg selv etter en viss tid. Formelt sier vi at en funksjon, f(x), er periodisk hvis det finnes en T slik at f(x) = f(x+T) for alle x. Dette er illustrert i filmen under.

SkjermfilmSe film om periodisitet

 
En mer kompleks kurve er et menneskes hjerterytme, vist under.

Periodisk kurve som viser et menneskes hjerterytme

Den er også periodisk, men lar seg ikke modellere med en enkelt trigonometrisk funksjon. Ved å bygge opp rekker av trigonometriske funksjoner kan vi imidlertid modellere alle periodiske fenomener.

Sinus og cosinus

Nå skal vi vise hvordan vi får fram kurvene til sinus og cosinus. Vi lager en sirkel med radius 1, merker av et punkt på sirkelen, og trekker ei linje inn til origo. Linja vil danne en vinkel med x-aksen:

Definisjon av sinus og cosinus

Sinus til denne vinkelen er da avstanden fra punktet ned til x-aksen, cosinus er avstanden fra punktet bort til y-aksen. Hvis vi lar vinkelen variere i skritt på 30° og måler disse avstandene, får vi følgende tabell:

Vinkel Sinus Cosinus
0,000 1,000
30° 0,500 0,866
60° 0,866 0,500
90° 1,000 0,000
120° 0,866 −0,500
150° 0,500 −0,866
180° 0,000 −1,000
210° −0,500 −0,866
240° −0,866 −0,500
270° −1,000 0,000
300° −0,866 0,500
330° −0,500 0,866
360° 0,000 1,000

Vi ser at sinus starter på 0 når vinkelen er 0°, når et maksimum på 1 når vinkelen er 90°, synker til 0 når vinkelen er 180°, når et minimum på −1 når vinkelen er 270°, og går tilbake til 0 når vinkelen er 360°. Etter 360° vil det hele gjenta seg. Sinus er altså periodisk med en periode på 360°. Cosinus følger samme mønster, men starter på 1 i stedet for 0. Kurvene for cosinus og sinus er derfor helt like, bare litt forskjøvet i forhold til hverandre. For enhver vinkel, v, har vi at cos(v − 90°) = sin v. Har vi for eksempel v = 270°, har vi cos(270° − 90°) = cos(180°) = −1 = sin(270°).

Verdiene til cosinus og sinus varierer altså bare innenfor intervallet [−1, 1]. Studerer vi fortegnet, ser vi følgende:

  • 1. kvadrant: sinus positiv og cosinus positiv.
     
  • 2. kvadrant: sinus positiv og cosinus negativ.
     
  • 3. kvadrant: sinus negativ og cosinus negativ.
     
  • 4. kvadrant: sinus negativ og cosinus positiv.

Et plott av grafene til sinus og cosinus er vist under. Sinus i blått og cosinus i rødt.

Kurvene til sinus og cosinus

Tangens

Den tredje trigonometriske funksjonen, tangens, får vi ved å dividere sinus på cosinus: $\tan x = \frac{\displaystyle \sin x }{\displaystyle \cos x }$. Et plott av grafen til tangens er vist under.

Kurven til tangens

Vi ser at verdiene til tangens ikke holder seg mellom 1 og 1, verdiområdet er hele $\mathbb R$.

Det finnes tre funksjoner til, der sinus, cosinus og tangens står under en brøkstrek:

  • cosekant: $\csc x = \frac{\displaystyle 1}{\displaystyle \sin x}$
     
  • sekant: $\sec x = \frac{\displaystyle 1}{\displaystyle \cos x}$
     
  • cotangens: $\cot x = \frac{\displaystyle 1}{\displaystyle \tan x}$

Disse brukes mindre, og vi kommer ikke tilbake til dem.

Inverse trigonometriske funksjoner

Så langt har vi startet med en vinkel og beregnet en verdi som representerer sinus, cosinus eller tangens til vinkelen, men vi kan også gå andre veien, starte med en verdi og finne den tilhørende vinkelen.

Til dette bruker vi inverse trigonometriske funksjoner, også kalt omvendte trigonometriske funksjoner. Den inverse sinusfunksjonen heter arcus sinus, forkortet arcsin, den inverse cosinusfunksjonen heter arcus cosinus, forkortet arccos, og den inverse tangensfunksjonen heter arcus tangens, forkortet arctan. Betegnelsen arcus betyr bue, og refererer til sirkelbuen vi bruker i definisjonen av de trigonometriske funksjonene. Vi kan også angi disse funksjonene ved invers-notasjon: sin−1, cos−1 og tan−1.

Definisjonsområdet til arcsin og arccos er [−1, 1] siden sinus og cosinus til en vinkel alltid ligger mellom −1 og 1. Definisjonsmengden til arctan er hele $\mathbb R$, siden tangens til en vinkel kan være et hvilket som helst tall.

Siden de trigonometriske funksjonene er periodiske, finnes det uendelig mange vinkler som korresponderer med en gitt verdi, så for å få entydighet, begrenser vi verdimengdene. arcsin og arctan har verdimengde [−90°, 90°], og arccos har verdimengde [0°, 180°].

Eksempel 1:

sin 30° = sin 390° = sin 750° = 0,5.

arcsin 0,5 = 30°.

Radianer

Vi er vant med at størrelsen på vinkler måles i grader, men det er egentlig ikke et særlig praktisk mål. I matematikken ellers opererer vi jo med tall. I stedet for grader som mål på en vinkel bruker en i matematikken heller noe som kalles radianer, og er vanlige tall uten enhet. Når vi måler i radianer, måler vi hvor stor bue en vinkel skjærer ut av en sirkel med radius 1. En vinkel på 1 radian skjærer ut en bue med lengde 1, slik det er vist i figuren under:

Illustrasjon av radian

Vi vet at omkretsen av en sirkel er gitt ved formelen O = 2πr, der r er sirkelens radius. Når radien er 1, blir omkretsen av sirkelen 2π En halv sirkel blir π, og en kvart sirkel blir $\large{\frac{\pi}{2}}$. Det vil si at 90° tilsvarer $\large{\frac{\pi}{2}}$ radianer, 180° tilsvarer π radianer, og 360° tilsvarer 2π radianer. En oversikt over vinkler i grader og radianer er vist under:

Illustrasjon av kopling mellom grader og radianer

Siden 180° tilsvarer π radianer, regner vi om fra grader til radianer ved å multiplisere med π og dividere med 180°. For å regne om fra radianer til grader multipliserer vi med 180° og dividerer med π.

Oppgave 1:

Regn om 45° til radianer.

Se løsningsforslag

Oppgave 2:

Regn om $\frac{\displaystyle 5 \pi}{\displaystyle 2}$ radianer til grader.

Se løsningsforslag

Et plott av sin x og cos x i radianer er vist under.

Kurvene til sinus og cosinus, skala langs x-aksen i radianer

En god motivasjon for å lære seg å håndtere radianer er at de fleste dataprogrammer forventer at vinkler oppgis i radianer. På kalkulatorer kan vi gjerne velge, og vi har ofte også et tredje alternativ, nygrader eller gradianer. Det er omtrent som grader, bare at sirkelen er delt i 400 grader i stedet for 360. En typisk feilårsak når trigonometriske beregninger bare blir nesten riktige, er at kalkulatoren er innstilt på nygrader, «GRA», i stedet for grader, «DEG».

Trigonometriske funksjoner i Excel og GeoGebra

Både i Excel og GeoGebra heter de trigonometriske funksjonene sin, cos og tan, og de inverse trigonometriske funksjonene heter arcsin, arccos og arctan. I GeoGebra kan også navnene asin, acos og atan brukes.

Vinkler oppgis i radianer i Excel. For å regne om fra grader til radianer bruker vi funksjonen radianer, og for å regne om fra radianer til grader bruker vi funksjonen grader.

Eksempel 2:

Vi skal beregne sinus til 30° i Excel. I ei celle skriver vi =sin(radianer(30))

I GeoGebra kan vi angi at en vinkel er oppgitt i grader ved å skrive et gradetegn, altså °, bak vinkelmålet. Dette tegnet får vi fram ved å trykke <alt>o. (Bokstaven «o»).

Eksempel 3:

Vi skal beregne sinus til 30° i GeoGebra. I inntastingsfeltet skriver vi sin(30°)

Gradetegnet får vi altså fram ved å trykke <alt>o.

I GeoGebra finnes det egne varianter av de inverse trigonometriske funksjonene, som gir resultatet i grader, asind, acosd og atand.

Eksempel 4:

Vi skal bruke Excel og GeoGebra til å finne en vinkel, målt i grader, som har tangens lik 1.

I ei celle i Excel skriver vi =grader(arctan(1))

I inntastingsfeltet i GeoGebra skriver vi atand(1)

På dette nettstedet finnes en egen artikkel om trigonometriske funksjoner i GeoGebra.

Det finnes funksjonsnavn både i Excel og GeoGebra som likner på de navnene vi har nevnt, men har en «h» på slutten, for eksempel sinh. Dette er hyperbolske varianter av de trigonometriske funksjonene, der vi i stedet for å definere funksjonene ved hjelp av en sirkel, definerer dem ved hjelp av en hyperbel. Vi går ikke nærmere inn på dette.

Oppgave 3:

Under vises en tabell der første rad skal ha vinkler målt i grader, andre rad vinkler målt i radianer, tredje rad sinus til vinkler, og fjerde rad cosinus til vinkler.

I hver kolonne er det oppgitt en verdi, og du skal beregne resten av verdiene i kolonnen. I kolonne 2 er for det eksempel oppgitt at en vinkel målt i grader er 84, og du skal beregne hva vinkelen blir i radianer, hva sinus til vinkelen blir og hva cosinus til vinkelen blir. 

Bruk dataprogram eller kalkulator til utregningene. Tall på desimalform er greit, det er ikke nødvendig med eksakte svar

Vinkel i grader   84    
Vinkel i radianer 0,78      
Sinus til vinkel     −0,40  
Cosinus til vinkel       0,53

SkjermfilmSe film med løsningsforslag

 

Kombinasjon av vinkler

Vi henter fram et utsnitt av figuren vi brukte da vi definerte sinus og cosinus:

Sinus og cosinus utgjør katetene i en rettrvinklet trekant

 

Vi ser at sinus og cosinus utgjør katetene i en rettvinklet trekant der hypotenusen har lengde 1. Pytagoras gir oss derfor følgende sammenheng:

$\fbox{$\sin^2 + \cos^2 = 1$}$

Oppgave 4:

Sinus til en vinkel er $\large \frac{\sqrt 3}{2}$. Hva er cosinus? Finn eksakt svar.

Se løsningsforslag

Speiler vi figuren over om x-aksen, ser den slik ut:

Sinus og cosinus speilet om x-aksen

Vinkelen v blir til vinkelen −v. Vi ser av figuren at når v skifter fortegn, skifter sinus fortegn, men cosinus forblir den samme. Vi har altså at

$\fbox{$\sin v = −\sin(−v) $}$

$\fbox{$\cos v = \cos(−v) $}$

Oppgave 5:

    1. Sinus til en vinkel på 30° er 0,5. Hva er sinus til en vinkel på −30°?
       
    2. Cosinus til en vinkel på 60° er 0,5. Hva er cosinus til en vinkel på −60°?
       
    3. Hva er cosinus til en vinkel på 300°?

Se løsningsforslag

Det er ikke slik at sinus eller cosinus til en sum av to vinkler er lik summen av sinus eller cosinus til hver av vinklene. Vi har derimot at for to vinkler, u og v er:

$\fbox{$\sin(u + v) = \sin u \cos v + \cos u \sin v$}$

$\fbox{$\cos(u + v) = \cos u \cos v − \sin u \sin v$}$

og

$\fbox{$\sin(u − v) = \sin u \cos v − \cos u \sin v$}$

$\fbox{$\cos(u − v) = \cos u \cos v + \sin u \sin v$}$

Oppgave 6:

Benytt følgende fakta

75° = 30° + 45°

sin 30° = $\large \frac{1}{2}$

cos 30°= $\large \frac{\sqrt 3}{2}$

sin 45° = cos 45° = $\large \frac{\sqrt 2}{2}$

til å finne eksakt

  1. sin 75°
     
  2. cos 75°

Se løsningsforslag

Fourier-rekker

Adderer vi polynomfunksjoner, får vi en ny polynomfunksjon. Adderer vi trigonometriske funksjoner derimot, får vi generelt ikke en ny trigonometrisk funksjon. Tvert imot kan enhver periodisk funksjon tilnærmes ved summer av trigonometriske funksjoner, såkalte Fourier-rekker, oppkalt etter matematikeren Jean Baptiste Joseph Fourier. Vi skal ikke gå nærmere inn på dette, bare vise et eksempel.

Vi ser på rekka $\sin x + \frac{\displaystyle \sin 3x}{\displaystyle 3} + \frac{\displaystyle \sin 5x}{\displaystyle 5} + \dots$

Tar vi med bare ett ledd, altså $\sin x$, blir grafen slik vi har sett flere ganger tidligere i denne artikkelen:

Fourier-rekke med ett ledd

Tar vi med to ledd, altså $\sin x + \frac{\displaystyle \sin 3x}{\displaystyle 3}$, får grafen en dipp. Vi har fått en helt ny periodisk funksjon:

Fourier-rekke med to ledd

Tar vi med tjue ledd, altså $\sin x + \frac{\displaystyle \sin 3x }{\displaystyle 3} + \dots + \frac{\displaystyle \sin 39x}{\displaystyle 39}$, ser grafen slik ut:

Fourier-rekke med tjue ledd

Summen av de fine, buede sinusgrafene blir en graf som nesten er firkantet. Jo flere ledd vi tar med, jo nærmere kommer grafen en perfekt firkantkurve. Figurene over er laget med GeoGebra. De som har lyst til å studere hvordan kurveformen endrer seg med antall ledd, kan åpne GeoGebra-fila det er lenket til under.

GeoGerba-filSe den tilhørende GeoGebra-fila.
 

Ved å undersøke hvordan fila er bygget opp, vil du også lære noe om bruk av følger og rekker i GeoGebra.

Kilder

    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget