Funksjonsanalyse med GeoGebra

I denne artikkelen skal vi se hvordan vi kan bruke GeoGebra til å lage grafer og punkter, finne funksjonsverdier, skjæringspunkter, ekstremalpunkter, vendepunkter og asymptoter, samt lage verditabeller og bruke glidere.

Eksempel 1:

Vi skal studere funksjonen f(x) = x4 + 6x3 + 7x2 − 5x − 1. Vi starter med å skrive inn funksjonsforskriften i inntastingsfeltet. Potenser angis med en hatt (^), så det blir
x^4 + 6x^3 + 7x^2 – 5x – 1. Grafen kommer opp i grafikkfeltet mens vi skriver, og når vi trykker på linjeskift-tasten, kommer funksjonsforskriften opp i algebrafeltet:

Graf til en fjerdegradsfunksjon i GeoGebra

Det kan være at vi må justere på akseverdiene for å få bildet slik som vist i eksempel 1. For å justere på akseverdiene åpner vi innstillinger-dialogboksen ved å velge «Rediger» – «Egenskaper», klikker på trekantsymbolet, og velger min- og maksverdier for x og y. I bildet over er «x-min» = -6, «x-max» = 3, «y-min» = -8, «y-max» = 10. (I stedet for å velge fra hovedmenyen kan vi også få opp innstillinger-dialogboksen ved å høyreklikke i grafikkfeltet eller på funksjonsforskriften i algebrafeltet og velge «Egenskaper»).

Punkter

Det finnes flere måter å lage punkter på, beskrevet i brukermanualen. Her skal vi lage punkter ved å skrive inn koordinatene, (x, y), i inntastingsfeltet, for eksempel (2, 3) eller (-2, 1). Punktene dukker opp både i algebrafeltet og i grafikkfeltet, og gis navn fortløpende med store bokstaver, A, B, C, etc. Vi kan også gi punktene egne navn, da skriver vi navnet og et likhetstegn foran koordinatene, for eksempel Origo = (0, 0). Et punktnavn kan altså bestå av flere bokstaver. NB! Første bokstav i navnet må være stor (versal), ellers blir punktet tolket som en vektor.

Funksjonsverdier

Med funksjonsverdien mener vi den verdien en funksjon gir ut når vi putter inn en gitt x-verdi. For å finne en funksjonsverdi, skriver vi funksjonsnavnet med den ønskede x-verdien i parentes i inntastingsfeltet. Har vi lagt inn en funksjon, f(x), finner vi for eksempel verdien til f i x = 1 ved å skrive f(1). Funksjonsverdien kommer opp i algebrafeltet, med navnet a. Navnene tildeles fortløpende på samme måte som for punkter, a, b, c, etc., men kan også gis egne navn på samme måte, for eksempel start = f(0). Vi kan fritt bruke både store og små bokstaver.

Basert på x-verdien og den tilhørende funksjonsverdien kan vi lage punkter på grafen til f(x). Har vi for eksempel funnet to funksjonsverdier, a = f(1) og b = f(−1), skriver vi (1, a) og (-1, b) i inntastingsfeltet.

Vi kan også lage et punkt på grafen uten å finne funksjonsverdien eksplisitt først. Vil vi for eksempel lage et punkt på grafen der x-verdien er −2, skriver vi (-2, f(-2)).

Oppgave 1:

Bruk GeoGebra til å tegne grafen til funksjonen g(x) = x3 − 4x + 2, og plott punktene på grafen som har x-verdi −1 og 1. Kall punktene A og B.

SkjermfilmSe film der løsningen vises
 

NB! I den løsningen som vises på filmen heter funksjonen z(x). Nå godtar ikke lenger GeoGebra z som funksjonsnavn, så oppgaven spør derfor etter g(x). Når du ser filmen, må du bare derfor huske å skrive g alle steder filmen sier z.

Skjæringspunkter

Med GeoGebra kan vi finne skjæringspunktene mellom to kurver, eller mellom en kurve og aksene. En enkel måte å gjøre det på er å velge «Skjæring mellom to objekt» fra menyen som vist under.

Menyvalg for å finne skjæring mellom to punkter i GeoGebra

Deretter klikker vi på kurvene/aksene vi vil finne skjæringspunktene mellom. Bildet under viser skjæringspunktene mellom
f(x) = x4 + 6x3 + 7x2 − 5x − 1 og x-aksen.

Skjæring mellom graf og x-akse i GeoGebra

Disse punktene representerer de fire løsningene til fjerdegradslikningen
 x4 + 6x3 + 7x2 − 5x − 1 = 0.

Ekstremalpunkter, nullpunkter og vendepunkter

Med GeoGebra kan vi finne en funksjons ekstremalpunkter, det vi si maksimums- og minimumspunkter, nullpunkter og vendepunkter.

I det følgende forutsetter vi at funksjonen f(x) er en polynomfunksjon. GeoGebra har mulighet for å finne ekstremalpunkter og nullpunkter til andre funksjonstyper også, men kommandoene krever flere parametere, og vi går ikke inn på det her. Sjekk i brukermanualen. Vendepunkter kan vi bare finne i polynomfunksjoner.

Ekstremalpunktene finner vi ved å skrive ekstremalpunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel ekstremalpunkt(f).

Nullpunktene finner vi ved å skrive nullpunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel nullpunkt(f). Nullpunktene er de samme som vi finner ved å be om skjæringspunktene mellom kurven og x-aksen.

Vendepunktene finner vi ved å skrive vendepunkt i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel vendepunkt(f).

Oppgave 2:

Ta utgangspunkt i funksjonen f(x) = x3 + 2x2 − x − 2.

        1. Bruk GeoGebra til å finne ekstremalpunktene til funksjonen.
           
        2. Bruk GeoGebra til å finne funksjonens vendepunkt.
           
        3. Bruk GeoGebra til å løse likningen x3 + 2x2 − x − 2 = 0.

Se løsningsforslag

​Asymptoter

GeoGebra kan finne både horisontale, vertikale og skrå asymptoter. For å finne asymptotene til en funksjon skriver vi asymptote i inntastingsfeltet etterfulgt av funksjonsnavnet i parentes, for eksempel asymptote(f).

Asymptotene presenteres i form av ei liste. Hvis en funksjon ikke har noen asymptoter, er lista tom.

Oppgave 3:

Finn eventuelle asymptoter til funksjonene

        1. $f(x) = 3 + \frac{\displaystyle 2}{\displaystyle x + 4}$
           
        2. $g(x) = x^2 + 3x − 2$

Se løsningsforslag

Lage verditabell

Ønsker vi å lage mange punkter langs en graf, er det tungvint å skrive inn x-verdiene én og én slik vi gjorde tidligere. Mye mer effektivt er det å bruke regneark-funksjonen til å generere en mengde punkter automatisk. Hvordan dette gjøres, er det lettest å vise ved hjelp av en film.

SkjermfilmSe film om å lage verditabell
 

Oppgave 4:

Tegn grafen til f(x) = x3 − 4x + 2 og bruk verditabell til å plotte punkter på grafen med x-verdier fra −2 til 2 i sprang på 0,2.

Det er ikke laget eget løsningsforslag til denne oppgaven, men den er nesten helt lik det som vises i filmen om å lage verditabell, så bruk filmen til hjelp.

Bruke glidere

Av og til ønsker vi å se hvordan grafen til en funksjon endrer seg når en konstant endrer seg. For eksempel studere hvordan stigningen til grafen til f(x) = ax + b endrer seg når a endrer seg, og hvordan skjæringspunktet med y-aksen endrer seg når b endrer seg.

Til det kan vi bruke glidere. En glider som heter a er vist under. I GeoGebra kan vi klikke på prikken og dra den mot høyre for å øke verdien til a, og mot venstre for å redusere verdien til a.

Glider i GeoGebra

For å sette inn en glider, velger vi fra menyen som vist under:

Velge glider fra menyen i GeoGebra

Deretter klikker vi på stedet i grafikkfeltet der vi vil ha glideren.
Vi får opp en dialogboks som vist under:

Dialogboks for å angi glider-data

Det viktigste her er å velge riktig navn. GeoGebra foreslår a som navn på første glider, b som navn på andre og så videre. Dette navnet må samsvare med parameteren vi skal undersøke. Dersom vi for eksempel skal undersøke k i funksjonen f(x) = kx2, må glideren hete k.

Når vi har valgt navn, må vi velge intervall, det vil si hvilket tallområde glideren skal dekke. I dialogboksen over er «Min» = -5 og «Maks» = 5, det betyr at glideren dekker intervallet [−5, 5]. Når den står helt til venstre, har den verdi −5, og når den står helt til høyre har den verdi 5.

Vi kan også velge animasjonstrinn, det vil si hvor mye verdien endrer seg når vi drar i glideren. I dialogboksen over er animasjonstrinnet «0.1», det vil si at hvis glideren står helt til venstre og vi drar den mot høyre, vil verdiene bli −5,0, −4,9, −4,8, … , 5.0.

Oppgave 5:

Bruk glidere i GeoGebra til å studere hvordan forskjellige valg av n påvirker grafen til funksjonen f(x) = xn. La n variere mellom hele tall fra 0 til 10.

SkjermfilmSe film der løsningen vises
 

GeoGebra-filLast ned den tilhørende GeoGebra-fila
 

Oppgave 6:

I et fysikkforsøk varmer en gruppe elever opp vann til det koker, mens de måler temperaturen hvert minutt. Temperaturen stiger en stund lineært med tida, men stopper på 100 grader.

I perioden mellom 10 og 14 minutter måler de følgende:

Tid (min) 10 11 12 13 14
Temperatur (grader Celsius) 60 64 70 76 80

Legg målingene inn som punkter i GeoGebra, og bruk glidere til å anslå en funksjonsforskrift for en lineær funksjon, f(t), som kan brukes som modell for forsøket. La gliderne angi hele tall. (Du skal altså finne forskriften at + b for ei rett linje som går nærmest mulig målepunktene, der a og b er hele tall, og t er tida).

        1. Hvilken funksjonsforskrift fant du?
           
        2. Bruk funksjonsforskriften til å anslå hvilken temperatur vannet hadde da forsøket startet.
           
        3. Bruk funksjonsforskriften til å anslå hvor mye temperaturen stiger per minutt.
           
        4. Kan funksjonsforskriften brukes til å anslå hvilken temperatur vannet vil ha etter 30 minutter?

Se løsningsforslag

Kilder

    • Bueie, H: (2011) GeoGebra for lærere. Universitetsforlaget
    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget

Ekstremalpunkter

Finne stasjonære punkter

I artikkelen om polynomfunksjoner ser vi vi at en andregradsfunksjon, f(x) = ax2 + bx + c, vil ha et topp- eller bunnpunkt når $x= −\frac{\displaystyle b}{\displaystyle 2a}$. Dette er fordi andregradsfunksjoner er symmetriske om sitt topp/bunnpunkt.

Andre funksjonstyper vil ikke ha så behagelige egenskaper. Da kan den deriverte komme oss til hjelp. Fordi den deriverte forteller hvor fort en funksjon endrer seg, må den deriverte i et topp- eller bunnpunkt være 0.

Eksempel 1:

Under vises grafen til funksjonen f(x) = 2x3 + 3x2 −12x + 4. Vi ser at den både har et toppunkt og et bunnpunkt.

Tredjegradsfunksjon med topp og bunnpunkt

Vi deriverer funksjonen, og får f′(x) = 6x2 + 6x − 12.

Løser vi likningen

f′(x) = 6x2 + 6x − 12 = 0, får vi

x1 = 1 og x2 = −2

De tilhørende funksjonsverdiene blir

f(1) = 2 · 13 + 3 · 12 − 12 · 1 + 4 = −3

f(−2) = 2(−2)3 + 3(−2)2 −12(−2) + 4 = 24

(Vi passer på å sette x-verdiene inn i den opprinnelige funksjonen, ikke i den deriverte.)

Av grafen ser vi at (−2, 24) er et toppunkt og (1, −3) er et bunnpunkt for f(x).

I stedet for toppunkt sier vi gjerne maksimumspunkt, og i stedet for bunnpunkt sier vi gjerne minimumspunkt. I et maksimumspunkt har altså funksjonen en maksimumsverdi, og i et minimumspunkt en minimumsverdi. Andre ord for det samme er maksimalpunkt og minimalpunkt og maksimalverdi og minimalverdi.

Et fellesnavn for maksimumspunkter og minimumspunkter er ekstremalpunkter. I slike punkter er den deriverte 0. Det finnes imidlertid enda en type punkt der den deriverte er 0:

Under vises grafen til f(x) = x3.

Tredjegradsfunksjon med terrassepunkt

Vi deriverer funksjonen, og får f′(x) = 3x2. Den deriverte er 0 når x = 0, men vi ser at funksjonen verken har et maksimum eller minimum da, grafen flater bare ut litt, før den fortsetter i samme retning. Dette kaller vi et terrassepunkt. 

Klassifisere stasjonære punkter

Et fellesnavn for ekstremalpunkter og terrassepunkter er stasjonære punkter. Funksjonsverdien endrer seg ikke der, den er stasjonær.

For å skille på de tre typene punkter kan vi studere hvordan fortegnet til den deriverte endrer seg. Vi har:

  • Maksimumspunkt. Den deriverte er 0 og skifter fortegn fra + til −.
     
  • Minimumspunkt. Den deriverte er 0 og skifter fortegn fra − til +.
     
  • Terrassepunkt. Den deriverte er 0, men skifter ikke fortegn.

Eksempel 2:

Funksjonen f(x) = x2 + 4x −2 har derivert f′(x) = 2x + 4, som er 0 når x = −2. Det er lett å se at fortegnet er negativt når x < −2 og positivt når x > −2.

Siden fortegnet derved skifter fra − til + har vi et minimumspunkt i x = −2.

Den tilhørende funksjonsverdien blir

f(−2) = (−2)2 + 4(−2) −2 = −6.

Så (−2, −6) er et minimumspunkt for f(x).

Siden den deriverte ikke er 0 andre steder enn i dette punktet, er det funksjonens eneste stasjonære punkt. Det stemmer med våre erfaringer med andregradsfunksjoner, som har ett enkelt topp- eller bunnpunkt.

For å avgjøre om vi har et maksimums-, minimums- eller terrassepunkt, studerer vi altså hva som skjer med den derivertes fortegn i punktet. Vi kan ikke konkludere med noe bare ved å se på funksjonsverdien alene. Det er nemlig ikke alltid slik at punktet med høyest funksjonsverdi er et maksimum, og punktet med lavest funksjonsverdi er et minimum. Dette er illustrert under.

Eksempel 3:

Under vises grafen til den rasjonale funksjonen $f(x) = {\large \frac{x^2−x+1}{1−x}}$.

Minimumspunktet har funksjonsverdi 1, mens maksimumspunktet har funksjonsverdi −3.

Illustrasjon av et makspunkt ikke trenger ha størst funksjonsverdi

Å se hvordan den deriverte skifter fortegn er imidlertid ikke alltid like lett som eksempel 2. I mer sammensatte tilfeller må vi faktorisere den deriverte, og så lage et fortegnsskjema. Fortegnsskjema presenteres i artikkelen om likninger og ulikheter av høyere grad, der det blir brukt som en hjelp til å løse ulikheter.

Eksempel 4:

I eksempel 1 fant vi at (−2, 24) er et maksimumspunkt og (1, −3) et minimumspunkt for funksjonen f(x) = 2x3 + 3x2 −12x + 4 ved å studere grafen. Nå skal vi se hvordan vi kan bruke fortegnsskjema til å komme fram til det samme. Den deriverte er altså

f′(x) = 6x2 + 6x − 12, med nullpunkter i x1 = 1 og x2 = −2.

Som det beskrives i artikkelen om å faktorisere polynomer, betyr dette at 6x2 + 6x − 12 kan faktoriseres som 6(x − 1)(x + 2).

Vi tegner faktorene (x − 1) og (x + 2) inn i et fortegnsskjema, der vi markerer negative verdier med en prikket linje og positive verdier med en heltrukken linje. (Faktoren 6 er alltid positiv, så vi bryr oss ikke om å ta den med.) Har faktorene har samme fortegn, er produktet positivt, har de forskjellig fortegn, er produktet negativt. Dette markerer vi med en linje for produktet, altså (x − 1)(x + 2) :

Bruk av fortegnsskjema til å bestemme fortegnet på derivert

Vi ser at fortegnet til (x − 1)(x + 2) skifter fra + til − i x = −2 og fra − til + i x = 1.

x = −2 og x = 1 er derfor henholdsvis maksimum og minimum for f(x).

Oppgave 1:

Bruk derivasjon og fortegnsskjema til å finne og klassifisere de stasjonære punktene til $f(x) = {\large \frac{1}{3}}x^3 − {\large \frac{1}{2}}x^2 −6x + 2$.

Med å klassifisere punktene mener vi å avgjøre om de er maksimums-, minimums-, eller terrassepunkter.

Se løsningsforslag

Ikke alle funksjoner har stasjonære punkter.

Eksempel 5:

Gitt funksjonen $f(x) = \ln x$, med derivert $f′(x) = {\large \frac{1}{x}}$. Den deriverte skifter riktig nok fortegn når x = 0, men definisjonsområdet til ln x er x > 0. Den deriverte er derved alltid positiv i definisjonsområdet, og funksjonen har ingen stasjonære punkter.

Grafene til $f(x) =\ln x$ og $f′(x) = {\large \frac{1}{x}}$ er vist under.

Grafen til ln x og den deriverte

Oppgave 2:

Bruk derivasjon til å avgjøre om funksjonen $f(x) = {\large \frac{1}{x}}$ har noen ekstremalpunkter.

Se løsningsforslag

I GeoGebra kan vi finne en funksjons ekstremalpunkter ved hjelp av funksjonen Ekstremalpunkt.

En funksjon kan naturligvis ha mer enn ett maksimumspunkt og ett minimumspunkt.

Eksempel 6:

Grafen under viser en funksjon med tre ekstremalpunkter. (Utenfor bildet fortsetter grafen mot minus uendelig på begge sider.)

Graf med flere maksimumspunkter

Vi ser at både A og C er maksimumspunkter, mens B er et minimumspunkt. 

Lokale og globale ekstremalpunkter

Vi skiller mellom lokale og globale punkter. Et globalt maksimumspunkt er et punkt der funksjonsverdien når sitt absolutte maksimum i hele definisjonsområdet. I eksempel 6 ser vi at C er et slikt punkt. Et lokalt maksimumspunkt er et punkt der funksjonsverdien når sitt maksimum innenfor et intervall. I eksempel 6 ser vi at både A og C er slike punkter.

Et globalt maksimumspunkt er også et lokalt maksimumspunkt, men for enkelhets skyld refererer vi bare til det som et globalt maksimumspunkt.

En funksjon kan godt ha flere globale maksimumspunkter, det vil si at funksjonsverdien når sitt absolutte maksimum for flere x-verdier. f(x) = sin x er et eksempel på en funksjon med uendelig mange globale maksimumspunkter. Funksjonsverdien når sitt absolutte maksimum på 1 for x = 90°, x = 450°, x = 810°, …

Med minimumspunkter forholder det seg på nøyaktig samme måte. Et globalt minimumspunkt er et punkt der funksjonsverdien når sitt absolutte minimum i hele definisjonsområdet. I eksempel 6 fortsetter grafen mot minus uendelig utenfor bildet, og det finnes derfor ikke noe globalt minimumspunkt. Derimot er B et lokalt minimumspunkt.

Et globalt minimumspunkt er også et lokalt minimumspunkt, men for enkelhets skyld refererer vi bare til det som et globalt minimumspunkt.

En funksjon kan godt ha flere globale minimumspunkter, det vil si at funksjonsverdien når sitt absolutte minimum for flere x-verdier. f(x) = sin x er et eksempel på en funksjon med uendelig mange globale minimumspunkter. Funksjonsverdien når sitt absolutte minimum på −1 for x = 270°, x = 630°, x = 990°, …

Formelt kan vi oppsummere dette slik:

  • En funksjon, f(x), har et globalt maksimumspunkt i f(c) hvis f(c) ≥ f(x) for alle x i definisjonsmengden, Df.
     
  • En funksjon, f(x), har et globalt minimumspunkt i f(c) hvis f(c) ≤ f(x) for alle x i definisjonsmengden, Df.
     
  • En funksjon, f(x), har et lokalt maksimumspunkt i f(c) hvis f(c) ≥ f(x) for alle x i et intervall rundt c.
     
  • En funksjon, f(x), har et lokalt minimumspunkt i f(c) hvis f(c) ≤ f(x) for alle x i et intervall rundt c.

Kritiske punkter

Hvis vi avgrenser definisjonsmengden til en funksjon, vil vi også endepunktene bli ekstremalpunkter. Disse kan være globale eller bare lokale.

Eksempel 7:

Grafen under har 6 ekstremalpunkter.

Ekstremalpunkter i graf med endepunkter

Globalt maksimumspunkt: C. Lokale maksimumspunkter: A og F.

Globalt minimumspunkt: E. Lokale minimumspunkter: B og D.

Punktene der en funksjon kan ha ekstremalpunkter, kalles kritiske punkter. Dersom en funksjon er definert på et intervall [a, b], vil kritiske punkter være:

  • x = a og x = b
     
  • Punkter der den deriverte er 0
     
  • Punkter der den deriverte ikke er definert.

For å finne en funksjons ekstremalpunkter, går vi fram på følgende måte:

  1. Vi finner funksjonens kritiske punkter.
     
  2. Vi bruker fortegnsskjema til å klassifisere punktene.
     
  3. Vi undersøk funksjonsverdien i de kritiske punktene for å avgjøre hvilke av dem som er globale.

I endepunktene til definisjonsområdet har vi jo ikke noe fortegnsskifte til den deriverte, men siden en positiv derivert betyr at funksjonsverdien stiger og en negativ derivert betyr at funksjonsverdien avtar, er det allikevel lett å klassifisere disse punktene.

Eksempel 8:

Vi skal finne alle ekstremalpunkter til funksjonen $f(x) = {\large \frac{1}{3}}x^3 + x^2 −3x$$D_f = [−6, 2]$.

Vi starter med å derivere funksjonen, og får

f′(x) = x2 + 2x − 3.

Vi løser likningen f′(x) = x2 + 2x − 3 = 0 og får

x1 = 1, x2 = −3.

Det vil si at den deriverte kan faktoriseres som f′(x) = 1(x − 1)(x + 3). Vi lager fortegnsskjema:

Bruk av fortegnsskjema til å bestemme fortegnet på derivert

Vi ser at x = −6 er et minimum fordi den deriverte er positiv ut fra dette punktet, slik at funksjonen stiger. Funksjonsverdien i punktet blir

$f(−6) = {\large \frac{1}{3}}(−6)^3 + (−6)^2 −3(−6) = −18$

Vi ser at x = −3 er et maksimum fordi den deriverte skifter fra positiv til negativ i dette punktet. Funksjonsverdien i punktet blir

$f(−3) = {\large \frac{1}{3}}(−3)^3 + (−3)^2 −3(−3) = 9$

Vi ser at x = 1 er et minimum fordi den deriverte skifter fra negativ til positiv i dette punktet. Funksjonsverdien i punktet blir

$f(1) = {\large \frac{1}{3}}1^3 + 1^2 −3\cdot 1 = −{\large \frac{5}{3}}$

Vi ser at x = 2 er et maksimum fordi den deriverte er positiv inn mot dette punktet, slik at funksjonen stiger. Funksjonsverdien i punktet blir

$f(2) = {\large \frac{1}{3}}2^3 + 2^2 −3\cdot 2 = {\large \frac{2}{3}}$

Vi ser at 9 er høyeste funksjonsverdi og −18 laveste. Vi får derfor at (−6, −18) er globalt minimumspunkt, (−3, 9) er globalt maksimumspunkt, $(1, −{\large \frac{5}{3}})$ er lokalt minimumspunkt, $(2, {\large \frac{2}{3}})$ er lokalt maksimumspunkt.

Grafen til funksjonen med ekstremalpunktene markert er vist under.

Graf som illustrerer resuktatene fra funksjonsdrøfting

Oppgave 3:

Finn og klassifiser alle ekstremalpunktene til $f(x) = {\large \frac{1}{3}}x^3 − {\large \frac{1}{2}}x^2 −6x + 2$$D_f = [−5, 5]$.
Hint: Du klassifiserte de stasjonære punktene til denne funksjonen i oppgave 1. Det kan du bygge videre på.

Se løsningsforslag

En funksjon som er definert på et lukket intervall, [a, b], og er kontinuerlig på intervallet, vil alltid ha minst ett globalt maksimumspunkt og minst ett globalt minimumspunkt. Dette er intuitivt rimelig. På en kontinuerlig graf mellom to punkter må det jo være noe som er øverst og nederst.

For en ikke-kontinuerlig funksjon er vi imidlertid ikke garantert å ha globale ekstremalpunkter, som vist i eksempel 9.

Eksempel 9:

Grafen til $f(x) = {\large \frac{1}{x}}$$D_f = [−5, 5]$ er vist under.

Grafen til 1/x på avgrenset område

Vi ser at funksjonen har et lokalt maksimum i x = −5 og et lokalt minimum i x = 5, men den har ingen globale ekstremalpunkter. Grafen går mot både pluss og minus uendelig ved x = 0.

Kilder

    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget
    • Thomas, G.B., Finney R.L. (1988). Calculus and Analytic Geometry. Addison-Wesley.
    • matematikk.org

Nullpunkter og ekstremalpunkter

Nullpunkter

En funksjons nullpunkter er eventuelle punkter der funksjonsverdien er 0. Grafisk sett er dette de punktene der grafen skjærer x-aksen.

Eksempel 1:

Under vises grafen til funksjonene f(x) = x2 + x − 2 med blått og g(x) = x2 + x + 2 med grønt. Vi ser at den blå grafen skjærer x-aksen i −2 og 1, så (−2, 0) og (1, 0) er nullpunktene til f(x). Den grønne grafen skjærer ikke x-aksen, så g(x) har ingen nullpunkter.

 

Grafer til funksjoner med og uten nullpunkter

 

Nullpunktene til en funksjon, f(x), finner vi ved å løse den tilhørende likningen f(x) = 0. For en andregradsfunksjon er det lett, for andre funksjoner kan det være vanskelig. Men hvis vi vet at en kontinuerlig funksjon har både positive og negative verdier, kan vi ved hjelp av skjæringssetningen slå fast at den i det minste har ett nullpunkt.

$\fbox {$\begin{align} &\text{Skjæringssetningen: } \\
&\text{Hvis } f \text{ er kontinuerlig på } [a, b] \text{, og } K \text{ er et tall mellom } f(a) \text{ og } f(b) \text{,} \\
&\text{så finnes en } c \in [a, b] \text{, slik at } f(c) = K
\end{align}$}$

Med andre ord vil en funksjon, f(x), som er kontinuerlig i et intervall, [a, b], anta alle mulige verdier mellom f(a) og f(b). Dersom f(a) og f(b) har forskjellig fortegn, innbefatter dette verdien 0.

Eksempel 2:

Grafen under viser funksjonen f(x) = x3 + 2x2 − 2x + 1 definert på intervallet [−3, 1].

Graf til funksjon med ett nullpunkt

Siden funksjonen er kontinuerlig, sier skjæringssetningen at funksjonen kan anta alle mulige verdier mellom f(−3) = −2 og f(1) = 2, det vil si intervallet [−2, 2]. Siden 0 ligger i dette intervallet, betyr det at funksjonen har minst ett nullpunkt.

En polynomfunksjon av odde grad, det vil si en førstegradsfunksjon, tredjegradsfunksjon, femtegradsfunksjon, osv. er kontinuerlig på hele $\mathbb{R}$. Siden funksjonsverdien går mot minus uendelig når x går mot minus uendelig, og mot pluss uendelig når x går mot pluss uendelig, betyr det at funksjonen kan anta alle mulige verdier, deriblant 0. En polynomfunksjon av odde grad har derfor alltid minst ett nullpunkt. Det betyr at den tilhørende likningen har minst én løsning.

Eksempel 3:

Vi skal avgjøre om fjerdegradsfunksjonen f(x) = 3x4 + 8x3 − 6x2 − 24x + 6 har nullpunkter, når vi vet at den har et minimumspunkt i f(1) = −13.

Vi vet at funksjonsverdien til en polynomfunksjon går mot uendelig når x går mot uendelig. Funksjonen f(x) vil derfor kunne anta alle mulige verdier i et intervall fra −13 til uendelig. Siden 0 ligger i dette intervallet garanterer skjæringssetningen at f(x) har minst ett nullpunkt. Det betyr at likningen f(x) = 0 har minst én løsning.

Oppgave 1:

Vis at likningen x5 + x4 + x3 + x − 1 = 0 har en løsning i intervallet [−1, 1].

SkjermfilmSe film med løsningsforslag
 

Ekstremalpunkter

En funksjon har et globalt maksimumspunkt der funksjonsverdien er høyest, og et globalt minimumspunkt der funksjonsverdien er lavest. Mer formelt sier vi at:

$\fbox {$\begin{align} &\text{En funksjon, } f \text{, har et } \\
&\text{globalt maksimumspunkt for } x = a \text{ hvis } f(x) \le f(a) \text{ for alle } x \text{ i definisjonsmengden } \\
&\text{globalt minimumspunkt for } x = a \text{ hvis } f(x) \ge f(a) \text{ for alle } x \text{ i definisjonsmengden}
\end{align}$}$

Andre ord for maksimumspunkt er maksimalpunkt eller toppunkt. Andre ord for minimumspunkt er minimalpunkt eller bunnpunkt.

Maksimumspunkter og minimumspunkter kalles med et fellesnavn ekstremalpunkter. Av og til kalles globale ekstremalpunkter for absolutte ekstremalpunkter.

En funksjon som er definert for hele $\mathbb{R}$, trenger ikke ha noen globale maksimums- eller minimumspunkter. For eksempel strekker f(x) = x3 seg fra minus uendelig til pluss uendelig, funksjonen har ingen største eller minste verdi. For en funksjon som er definert på et lukket intervall, [a, b], garanterer imidlertid ekstremalverditeoremet at funksjonen alltid vil ha minst ett globalt maksimumspunkt og minst ett globalt minimumspunkt. Dette er intuitivt riktig. Minst ett sted må være øverst og minst ett sted må være nederst på en graf som ikke går mot uendelig.

Ekstremalverdier kan også være lokale. Det vil si at en funksjon har et maksimums- eller minimumspunkt en plass, men kan ha et punkt med større eller mindre verdi en annen plass. Mer formelt sier vi at:

$\fbox {$\begin{align} &\text{En funksjon, } f \text{, har et } \\
&\text{lokalt maksimumspunkt for } x = a \text{ hvis } f(x) \le f(a) \text{ i en omegn om } a\\
&\text{lokalt minimumspunkt for } x = a \text{ hvis } f(x) \ge f(a) \text{ i en omegn om } a
\end{align}$}$

Alle globale ekstremalpunkter er også lokale.

Eksempel 4:

Grafen under viser funksjonen f(x) = x4 + 6x3 + 7x2 − 5x − 1.

Illustrasjon av ekstremalverdier i funksjon uten avgrensninger

Her ser vi at A er et globalt minimumspunkt for f(x), fordi dette er grafens laveste punkt. C er også et minimumspunkt, men det er kun lokalt fordi C bare er laveste punkt i en viss omegn. B er et maksimumspunkt for f(x), men det er kun lokalt fordi B bare er høyeste punkt i en viss omegn. Funksjonen har ingen globale maksimumspunkter fordi funksjonsverdien vokser mot uendelig.

Eksempel 5:

Grafen under viser samme funksjon som eksempel 4, men med definisjonsområdet begrenset til [−4, 1].

Illustrasjon av ekstremalverdier i funksjon med avgrensninger

Grafen har nå fått to endepunkter, D og E. Endepunktene vil alltid utgjøre maksimums- eller minimumspunkter. I eksemplet over er begge maksimumspunkter. D er lokalt fordi punktet bare ligger øverst i en viss omkrets, mens E er globalt fordi punktet ligger øverst i hele definisjonsområdet.

Oppgave 2:

Studer grafen under og klassifiser ekstremalpunktene A, B, C og D.

Oppgave med klassifikasjon av ekstremalverdier

SkjermfilmSe film med løsningsforslag
 

For å finne ekstremalpunktene til en vilkårlig funksjon brukes derivasjon, som behandles i en serie artikler på dette nettstedet.

Kilder

    • Gulliksen, T. & Hole, A. (2010). Matematikk i praksis. Universitetsforlaget