Andregradslikninger

I artikkelen om førstegradslikninger ser vi at førstegradslikninger er algebraiske likninger (polynomlikninger) der den høyeste potensen av den ukjente er 1. Andregradslikninger er algebraiske likninger der den høyeste potensen av den ukjente er 2, for eksempel likningen 3x2 + 6x = − 9. Andregradslikninger kalles også gjerne kvadratiske likninger.

Løse andregradslikninger

Som når vi løser førstegradslikninger, starter vi med å organisere likningen slik at ledd med x havner på venstre side av likhetstegnet, og ledd uten x på høyre, med uttrykkene forenklet så langt som mulig.

Eksempel 1:

Vi skal organisere leddene i andregradslikningen 3x2 + 2 = 2x2 + 6.

Flytter 2x2 over til venstre side med fortegnsskifte og trekker sammen:
x2 + 2 = 6

Flytter 2 over til høyre side med fortegnsskifte og trekker sammen:
x2 = 4

I eksempel 1 har vi isolert uttrykket med x på venstre side. Men i motsetning til i førstegradslikninger, har vi nå x i andre potens. For å finne ut hva x er, må vi trekke ut kvadratrota av begge sider av likningen. Dette er en lovlig operasjon når vi løser likninger, men vi må huske at både $\sqrt a$ og $−\sqrt a$ gir $a$ når vi kvadrerer, så vi må regne ut både en positiv og en negativ rot, noe vi angir med et pluss/minus-tegn, ±.

Eksempel 2:

Vi skal finne løsningen til likningen fra eksempel 1.

Vi har:
$x^2 = 4$

Setter rot-tegn på begge sider:
$\sqrt{x^2}=\pm\sqrt4$

Trekker ut røttene:
$x = \pm 2$

Alternativt skriver vi dette som
$x_1 = 2, \, x_2 = −2$

Setter prøve på svaret, og regner først ut venstre side når x = 2:

V.S.: x2 = 22 = 4.

Når x = −2, får vi:

V.S.: x2 = (−2)2 = 4.

H.S.: 4.

I begge tilfeller er V.S. det samme som H.S., så begge løsningene er riktige.

Vi ser at likningen i eksempel 2 har to løsninger. Det finnes også tilfeller der en andregradslikning bare har én løsning, for eksempel x2 = 0, som bare har løsningen x = 0. Og det finnes tilfeller der en andregradslikning ikke har løsninger, for eksempel x2 = −4. Vi skal se nærmere på dette senere.

Oppgave 1:

Løs likningen x2 − 7 = 1.

SkjermfilmSe film der løsningen vises
 

Likninger med førstegradsledd

Likningen i eksempel 1 og 2 inneholdt bare et andregradsledd, x2, og en konstant, −4. Men en andregradslikning kan også inneholde et førstegradsledd. For eksempel likningen x2 + 4x = −4, som i tillegg til andregradsleddet, x2, og konstantleddet, −4, inneholder førstegradsleddet 4x.

En slik likning kan vi ikke løse ved å trekke ut kvadratrota på begge sider av likhetstegnet, fordi vi har et førstegradsledd i tillegg til andregradsleddet på venstre side. En løsning kan da være å samle alle leddene på venstre side, og bruke en kvadratsetning baklengs, som vist i eksempel 3.

Eksempel 3:

Vi skal løse likningen $x^2 + 4x = −4$.

Flytter −4 over til venstre med fortegnsskifte:
$x^2 + 4x + 4 = 0$

Bruker første kvadratsetning baklengs ved å skrive $x^2 + 4x + 4 = 0$ som $ (x + 2)^2$:
$ (x + 2)^2 = 0$

Setter rot-tegn på begge sider:
$\sqrt{ (x + 2)^2} = \pm \sqrt{0}$

Trekker ut røttene:
$x + 2 = 0$

Flytter 2 over til høyre side med fortegnsskifte:
$x = −2$

Setter prøve på svaret:

V.S.: x2 + 4x = (−2)2 + 4(−2) = 4 − 8 = −4

H.S.: −4

V.S. det samme som H.S., så løsningen er riktig.

I eksempel 3 ser vi at andregradslikningen bare hadde 1 løsning. Slik er det alltid når vi har et kvadrat på venstre side og 0 på høyre side av likhetstegnet.

Oppgave 2:

Løs likningen x2 + 6x = −9.

Hint: x2 + 6x + 9 = (x + 3)2

Se løsningsforslag

Kvadratkomplettering

De fleste andregradsuttrykk kan imidlertid ikke omskrives ved hjelp av en kvadratsetning baklengs. Det finnes for eksempel ikke noe uttrykk som ved hjelp av en kvadratsetning gir x2 + 6x + 5.

Generelt, hvis x er en variabel og k er en konstant, blir (x + k)2 til x2 + 2kx + k2 når vi regner det ut ved hjelp av første kvadratsetning. Vi ser at konstantleddet er k2, og koeffisienten i førstegradsleddet er 2k. Konstantleddet er altså lik halve koeffisienten i førstegradsleddet kvadrert (opphøyd i andre), $({\large \frac{1}{2}} \cdot 2k)^2 = k^2$.

Hvis konstantleddet i et andregradsuttrykk ikke er lik halve koeffisienten i førstegradsleddet kvadrert, kan det ikke skrives om ved hjelp av en kvadratsetning baklengs.

Imidlertid kan vi alltid omforme en andregradslikning slik at vi får et uttrykk på venstre side av likhetstegnet der dette kravet er oppfylt.

Eksempel 4:

Vi skal løse likningen $x^2 + 6x = −5$.

For at vi skal kunne skrive om uttrykket på venstre side ved hjelp av en kvadratsetning baklengs, må vi altså ha et konstantledd som er lik halve koeffisienten til førstegradsleddet kvadrert. Førstegradsleddet her er 6x, så koeffisienten er 6. Halvparten av dette er 3, som kvadrert blir 9. Så vi må addere 9 til uttrykket x2 + 6x. I en likning kan vi legge til samme verdi på begge sider av likhetstegnet, så vi kan skrive likningen som:
$x^2 + 6x + 9 = −5 + 9$

Så regner vi ut høyresiden og får:
$x^2 + 6x + 9 = 4$

Nå kan vi skrive om fra formen x2 + 2kx + k2 til (x + k)2. Her er k2 = 9, så k = 3, og vi får:
$(x+3)^2 = 4$

Setter rot-tegn på begge sider:
$\sqrt{ (x + 3)^2} = \pm \sqrt{4}$

Trekker ut røttene:
$x + 3 = \pm 2$

Flytter 3 over til høyre side med fortegnsskifte:
$x = \pm 2 − 3$

Det vil si at løsningene er

$ x_1 = 2 − 3 = −1$

$x_2 = −2 − 3 = −5$

Setter prøve på svaret, og regner først ut venstre side når x = −1:

V.S.: x2 + 6x = (−1)2 + 6(−1) = 1 − 6 = −5.

Når x = −5, får vi:

V.S.: x2 = x2 + 6x = (−5)2 + 6(−5) = 25 − 30 = −5.

H.S.: −5.

I begge tilfeller er V.S. det samme som H.S., så begge løsningene er riktige.

Metoden i eksempel 4 kalles kvadratkomplettering, eller fullstendige kvadraters metode. Vi tar altså utgangspunkt i koeffisienten til førstegradsleddet, halverer og kvadrerer den, og legger den til på begge sider av likhetstegnet.

Huskeregel: Halvere, kvadrere, addere.

Illustrasjon av regelen "halvere, kvadrere, addere"

Oppgave 3:

Løs likningen x2 + 2x = 3 ved å bruke metoden med kvadratkomplettering.

Se løsningsforslag

​Hvis andregradsleddet har en annen koeffisient enn 1, dividerer vi den bort først.

Eksempel 5:

Vi skal løse likningen 3x2 + 18x = −15

Her er det en koeffisient som er 3 foran andregradsleddet. Vi benytter da regelen om at vi kan dividere med samme tall på begge sider av en likning, dividerer med 3, og får x2 + 6x = −5, som har samme løsning. Denne likningen løste vi i eksempel 4 og fikk at x1 = −1, x2 = −5.

I alle eksemplene vi har sett på, har koeffisienter og løsninger vært hele tall. Det er bare for å gjøre utregningene oversiktlige. I praksis vil vi i de fleste tilfeller arbeide med likninger der koeffisienter og løsninger ikke er hele tall.

Oppgave 4:

Bruk metoden med kvadratkomplettering til å løse likningen 2x2 = − 10x − 12.

SkjermfilmSe film der løsningen vises
 

Kilder

    • Gulliksen T. (2000). Matematikk i praksis. Universitetsforlaget

Førstegradslikninger

En algebraisk likning (polynomlikning) der den høyeste potensen av den ukjente er 1, kalles en førstegradslikning. For eksempel er 3x − 2 = x + 2 en førstegradlikning. Vi vet at x kan skrives som x1, så x er i første potens, selv om vi sløyfer å skrive 1-tallet.

En førstegradslikning kalles ofte også en lineær likning.

Løse førstegradslikninger

Vi kan tenke på en førstegradslikning som en skålvekt, der venstre skål inneholder det som står til venstre for likhetstegnet, og høyre skål inneholder det som står til høyre for likhetstegnet:

Skålvekt som illustrerer balanse i likning

Skålvekta er i balanse, og vår jobb er å få elementene organisert slik at den ukjente ligger alene på venstre skål, og vekta fremdeles er i balanse.

Vekta forblir i balanse selv om vi

    • adderer eller subtraherer samme verdi på begge sider.
    • multipliserer eller dividerer med samme verdi på begge sider. (Vi må da passe på å ikke dividere med 0.)

De fire grunnleggende regneoperasjonene nevnt over, er alt vi trenger for å løse en førstegradslikning.

Hvilke regneoperasjoner vi skal gjøre, og i hvilken rekkefølge, når en likning skal løses, vil variere, og det kan ikke gis noen entydig oppskrift. Vi må imidlertid arbeide med å isolere den ukjente som mål. Planløs taktikk fører gjerne til unødvendige og kompliserende regneoperasjoner.

Eksempel 1:

Vi skal løse likningen 3x − 2 = x + 2.

Subtraherer x på begge sider av likhetstegnet:
3xx − 2 = xx + 2

Trekker sammen leddene med x:
2x − 2 = 2

Adderer 2 på begge sider av likhetstegnet:
2x − 2 + 2 = 2 + 2

Regner sammen:
2x = 4

Dividerer med 2 på begge sider av likhetstegnet:
x = 2

Vi skal nå være litt mer generelle og tenke oss at vi har vilkårlige tall på begge sider av likhetstegnet: x + b = c. Så ønsker vi å stå igjen med bare x på venstre side. Da adderer vi –b på begge sider: x + bb = cb. På venstre side blir bb null, så vi står igjen med x = cb. Sammenlikner vi med det vi startet med, ser vi at b-en har flyttet seg over til høyre side og skiftet fortegn. I praksis går vi derfor ikke gjennom den omstendelige prosedyren med å addere eller subtrahere på begge sider, vi flytter bare over og skifter fortegn. Dette er den såkalte «flytte-bytte»-regelen. Regelen er praktisk i bruk, men illustrerer ikke at det vi faktisk gjør, er å legge til eller trekke fra det samme på begge sider av likhetstegnet.

Fra nå av kommer vi til å bruke «flytte-bytte»-regelen for enkelhets skyld, men husk at det vi egentlig gjør, er å legge til eller trekke fra det samme på begge sider av likhetstegnet.

Utregningen i eksempel 1 vil vi gjøre så kortfattet som i eksempel 2:

Eksempel 2:

Vi skal løse likningen 3x − 2 = x + 2.

Flytter x over på venstre side, skifter fortegn og trekker sammen:
2x − 2 = 2

Flytter −2 over på høyre side, skifter fortegn og trekker sammen:
2x = 4

Dividerer med 2 på begge sider:
x = 2

Oppgave 1:

Under vises løsningen av en likning i fire trinn. Angi for hvert trinn hvilke regneregler som brukes. Det kan være det brukes flere regler i hvert trinn.

$\begin{align} 3(2x + 3) &= 12 + 3x \\
\; \\
6x + 9 &= 12 + 3x \\
\; \\
6x &= 3 + 3x \\
\; \\
3x &= 3 \\
\; \\
x &= 1 \end{align}$

SkjermfilmSe film der løsningen vises
 

Sette prøve på svar

Når vi har løst en likning, kan vi sette prøve på svaret. Det gjør vi ved å sette svaret vårt inn som verdi for den ukjente på både venstre og høyre side av den opprinnelige likningen, og kontrollere at vi får samme svar på begge sider.

Eksempel 3:

Vi har løst likningen 3x − 2 = x + 2, funnet at x = 2, og skal sette prøve på svaret. Vi får

V.S.: 3x − 2 = 3 · 2 − 2 = 4

H.S.: x + 2 = 2 + 2 = 4

Begge sider er lik 4, så løsningen er riktig.

I eksempel 3 ser vi at vi regner ut venstre og høyre side hver for seg. Her står V.S. for «venstre side» og H.S. for «høyre side». Alternativt kan vi regne ut venstre og høyre side parallelt med en vertikal strek imellom. Det vi imidlertid ikke gjør, er å føre prøven med likhetstegn mellom sidene, for vi vet ikke om de er like, det er det vi skal kontrollere.

Eksempel 4:

Vi har løst likningen 3x − 2 = x + 2 feil, funnet at x = 3, og skal sette prøve på svaret:

3x − 2 = x + 2
3 · 3 − 2 = 3 + 2
7 = 5

I eksempel 4 ser vi at vi ender opp med å si at 7 er lik 5. Å sette likhetstegn mellom noe vi ikke vet er likt, kalles misbruk av likhetstegnet, og er noe vi skal unngå.

Oppgave 2:

Løs likningen 5x + 3x + 6 – 2 = 7x + 6 og sett prøve på svaret.

SkjermfilmSe film der likningen løses
 

Grafiske løsninger

Generelt har førstegradslikninger formen ax + b = 0, der a og b er vilkårlige tall, for eksempel 3x + 2 = 0. Hvis vi har en førstegradslikning som ikke har denne formen, kan vi omforme den ved å flytte alle leddene til venstre side og forenkle så langt som mulig.

Eksempel 5:

Vi skal skrive likningen fra eksempel 1 på formen ax + b = 0.

Vi har:
3x − 2 = x + 2

Flytter x over på venstre side, skifter fortegn og trekker sammen:
2x − 2 = 2

Flytter 2 over på venstre side, skifter fortegn og trekker sammen:
2x − 4 = 0

Likningen er nå på formen ax + b = 0, med a = 2 og b = −4.

Når en likning er på formen ax + b = 0, kan vi løse den grafisk ved å tegne opp grafen til funksjonen y = ax + b. Løsningen til likningen er da den verdien x har der grafen skjærer x-aksen, det vil si der y = 0.

Grafen til en førstegradsfunksjon er en rett linje, og vi kan tegne den for hånd ved å beregne to punkter på grafen og så trekke en rett linje gjennom punktene ved hjelp av en linjal. Det spiller ingen rolle hvilke punkter vi velger, men vi får en mer presis graf hvis vi legger punktene et stykke fra hverandre. Og å velge x = 0 som ett av punktene gir jo en enkel utregning. Det vi ikke gjør, er å velge mer enn to punkter, det gir en dårligere graf. Vi ser av og til studenter som velger mange punkter for å tegne grafen til en førstegradsfunksjon, og på grunn av unøyaktighet ender de opp med noe som ser ut som en slange som bukter seg mellom punktene.

I eksempel 5 har vi likningen 2x − 4 = 0, den tilhørende førstegradsfunksjonen blir y = 2x − 4. For å finne to punkter på grafen til denne kan vi for eksempel først velge x = 0, da får vi y = 2x − 4 = 2 · 0 − 4 = − 4. Velger vi så x = 4, får vi y = 2x − 4 = 2 · 4 − 4 = 4. Vi har da punktene (0, −4) og (4, 4), og kan tegne en rett linje gjennom dem. Vi vil se at grafen skjærer x-aksen i (2, 0). Løsningen til likningen 3x − 2 = x + 2 er altså x = 2, noe som stemmer med det vi fant ved regning i eksempel 1 og 2.

Vi kan også tegne grafen og finne skjæringspunktet med x-aksen i GeoGebra, slik det er vist under. Her har vi første skrevet 2x − 4 i inntastingsfeltet, og GeoGebra har tegnet opp grafen og kalt den tilhørende funksjonen f. Så har vi skrevet Skjæring(f, xAkse) for å finne punktet der grafen til f skjærer x-aksen. GeoGebra har kalt punktet A, markert det i grafikkfeltet, og angitt koordinatene i algebrafeltet.

Grafen til y = 2x - 4

Vi ser at skjæringspunktet med x-aksen er (2, 0). I dette tilfellet er skjæringspunktet et helt tall, men det kan være at skjæringspunktet ser ut til å være et helt tall, men egentlig ikke er det. I bildet under kan det for eksempel se ut som skjæringen er i x = 2, mens det egentlig er i x = 2,05. For å få den eksakte verdien bruker vi derfor funksjonen Skjæring i GeoGebra.

Skjæringspunkt som ikke er heltall

 

Oppgave 3:

Løs likningen 5x + 3x + 6 – 2 = 7x + 6 grafisk.

SkjermfilmSe film der likningen løses grafisk
 

Likninger med algebraiske symboler

Så langt har vi arbeidet med likninger der den ukjente har vært x, og de andre elementene tall. Men det er ikke noe i veien for at vi kan ha flere algebraiske symboler i en likning. Når vi skal løse en slik likning, må det være klargjort hvilket symbol som representerer den ukjente vi skal løse med hensyn på.

Eksempel 6:

Vi skal løse likningen 2uv = 4u + v − 2 med hensyn på u. Målet er da å isolere u på venstre side av likhetstegnet.

Flytter 4u over på venstre side, skifter fortegn og trekker sammen:
−2uv = v − 2

Flytter −v over på høyre side, skifter fortegn og trekker sammen:
−2u = −2v − 2

Dividerer med −2 på begge sider:
u = −v + 1

Vi har nå løst likningen med hensyn på u, for u er isolert på venstre side av likhetstegnet, og uttrykket på høyre side er forenklet så langt det går.

Vil vi sette prøve på svaret, erstatter vi u med løsningen −v + 1 på begge sider av likhetstegnet:

V.S.: 2uv = 2(−v + 1) − v = −2v + 2 − v = −3v + 2

H.S.: 4u + v − 2 = 4(−v + 1) + v − 2 = −4v + 4 + v − 2 = −3v + 2

Begge sider er lik −3v + 2, så løsningen er riktig.

Oppgave 4:

Løs likningen fra eksempel 6, 2uv = 4u + v − 2, med hensyn på v, og sett prøve på svaret.

Se løsningsforslag

Kilder